
MCUXpresso SDK 3-Phase PMSM Control
(DSC)

NXP Semiconductors Document identifier: 3PPMSMCDSCUG
User Guide Rev. 0, 12/2020

Contents
Chapter 1 Introduction... 3

Chapter 2 Hardware setup...4

Chapter 3 MC56F8xxxx series features and peripheral settings........................... 9

Chapter 4 Project file and IDE workspace structure.. 14

Chapter 5 Motor-control peripheral initialization.. 16

Chapter 6 User interface..18

Chapter 7 Remote control using FreeMASTER...19

Chapter 8 Identifying parameters of user motor using MCAT..............................26

Chapter 9 Conclusion.. 41

Chapter 10 Acronyms and abbreviations...42

Chapter 11 References..43

Chapter 12 Useful links..44

NXP Semiconductors

MCUXpresso SDK 3-Phase PMSM Control (DSC), Rev. 0, 12/2020
User Guide 2 / 45

Chapter 1
Introduction
This user's guide describes the implementation of the sensorless Motor Control software for the 3-phase Permanent Magnet
Synchronous Motor (PMSM), including the motor parameters identification algorithm, on the NXP MC56F81xxx and MC56F83xxx
MCUs based on the 56800EX DSP architecture. The sensorless control software and PMSM control theory in general are
described in Sensorless PMSM Field-Oriented Control (documentDRM148). The NXP Freedom board (FRDM-MC-LVPMSM)
is used as hardware platform for the PMSM control reference solution. The hardware-dependent part of the sensorless control
software, including a detailed peripheral setup and the Motor Control (MC) peripheral drivers, is addressed as well. The motor
parameters identification theory and algorithms are described in this document. The last part of the document introduces and
explains the user interface represented by the Motor Control Application Tuning (MCAT) page based on the FreeMASTER
run-time debugging tool. These tools present a simple and user-friendly way for motor parameter identification, algorithm tuning,
software control, debugging, and diagnostics.

This document provides instructions for running and controlling the PMSM project using the MC56F81000-EVK and
MC56F83000-EVK boards with the FRDM-MC-LVPMSM. The software provides the sensorless field-oriented speed, torque, and
scalar control. You can control the application using the board buttons or the FreeMASTER application. The motor identification
and application tuning is done using the MCAT tool integrated in the FreeMASTER page. The required software, hardware
setup, jumper settings, project arrangement, and user interface is described in the following sections. For more information, visit
www.nxp.com/motorcontrol_pmsm.

NXP Semiconductors

MCUXpresso SDK 3-Phase PMSM Control (DSC), Rev. 0, 12/2020
User Guide 3 / 45

https://www.nxp.com/webapp/Download?colCode=DRM148
https://www.nxp.com/design/development-boards/freedom-development-boards/mcu-boards/nxp-freedom-development-platform-for-low-voltage-3-phase-pmsm-motor-control:FRDM-MC-LVPMSM
https://www.nxp.com/docs/en/application-note/AN4642.pdf
http://www.nxp.com/motorcontrol_pmsm

Chapter 2
Hardware setup
The PMSM Field-Oriented Control (FOC) application runs on the FRDM-MC-LVPMSM development platform with the
MC56F81000-EVK or MC56F83000-EVK development board, in combination with the Linix 45ZWN24-40 permanent magnet
synchronous motors.

2.1 FRDM-MC-LVPMSM
This evaluation board, in a shield form factor, effectively turns an NXP Freedom development board or an evaluation board into
a complete motor-control reference design, compatible with existing NXP Freedom development boards and evaluation boards.
The Freedom motor-control headers are compatible with the Arduino™ R3 pin layout.

The FRDM-MC-LVPMSM low-voltage, 3-phase Permanent Magnet Synchronous Motor (PMSM) Freedom development platform
board has the power supply input voltage of 24-48 VDC with a reverse polarity protection circuitry. The auxiliary power supply
of 5.5 VDC is created to supply the FRDM MCU boards. The output current is up to 5 A RMS. The inverter itself is realized by a
3-phase bridge inverter (six MOSFETs) and a 3-phase MOSFET gate driver. The analog quantities (such as the 3-phase motor
currents, DC-bus voltage, and DC-bus current) are sensed on this board. There is also an interface for speed and position sensors
(encoder, hall). The block diagram of this complete NXP motor-control development kit is shown in Figure 1.

Figure 1. Motor-control development platform block diagram

NXP Semiconductors

MCUXpresso SDK 3-Phase PMSM Control (DSC), Rev. 0, 12/2020
User Guide 4 / 45

Figure 2. FRDM-MC-LVPMSM

The FRDM-MC-LVPMSM board does not require a complicated setup. For more information about the Freedom development
platform, see www.nxp.com.

2.2 Linix 45ZWN24-40 motor
The Linix 45ZWN24-40 motor is a low-voltage 3-phase permanent-magnet motor with hall sensor used in PMSM applications. The
motor parameters are listed in Table 1.

Table 1. Linix 45ZWN24-40 motor parameters

Characteristic Symbol Value Units

Rated voltage Vt 24 V

Rated speed - 4000 RPM

Rated torque T 0.0924 Nm

Rated power P 40 W

Continuous current Ics 2.34 A

Number of pole-pairs pp 2 -

NXP Semiconductors
Hardware setup

MCUXpresso SDK 3-Phase PMSM Control (DSC), Rev. 0, 12/2020
User Guide 5 / 45

http://www.freescale.com

Figure 3. Linix 45ZWN24-40 permanent magnet synchronous motor

The motor has two types of connectors (cables). The first cable has three wires and is designated to power the motor. The second
cable has five wires and is designated for the hall sensors’ signal sensing. For the PMSM sensorless application, only the power
input wires are needed.

2.3 MC56F81000-EVK
The MC56F81xxx development board is an ideal platform for evaluation and development with the MC56F81xxx MCU based on
the 56800EX DSP architecture. The board includes the high-performance on-board debug probe. Configure the jumper settings
according to Figure 4 for the motor-control application to work properly.

Table 2. MC56F81000-EVK jumper settings

Jumper Setting Jumper Setting Jumper Setting

J5 close J15 1-2 J21 close

J6 close J16 close J22 close

J8 2-3 J17 open J23 open

J9 open J18 open J24 1-2

J11 2-3 J19 close J25 1-2

J13 1-2, 3-4, 5-6, 7-8 J20 open

NXP Semiconductors
Hardware setup

MCUXpresso SDK 3-Phase PMSM Control (DSC), Rev. 0, 12/2020
User Guide 6 / 45

Figure 4. MC56F81000-EVK board with jumper settings

Hardware assembling

1. Plug the FRDM-MC-LVPMSM power stage to the MC56F81000-EVK board.

2. Connect the 3-phase motor wires to the screw terminals (J7) on the Freedom PMSM power stage.

3. Plug the USB cable from the USB host to the USB connector (Boot USB - J26) on the EVK board.

4. Plug the 24-V DC power supply to the DC power connector on the Freedom PMSM power stage.

2.4 MC56F83000-EVK
The MC56F83xxx development board is an ideal platform for evaluation and development with the MC56F83xxx MCU based on
the 56800EX DSP architecture. The board includes the high-performance on-board debug probe. Configure the jumper settings
according to Figure 5 for the motor-control application to work properly.

Table 3. MC56F83000-EVK jumper settings

Jumper Setting Jumper Setting Jumper Setting

J5 open J13 close J19 2-3

J6 open J15 close J22 2-3

Table continues on the next page...

NXP Semiconductors
Hardware setup

MCUXpresso SDK 3-Phase PMSM Control (DSC), Rev. 0, 12/2020
User Guide 7 / 45

Table 3. MC56F83000-EVK jumper settings (continued)

Jumper Setting Jumper Setting Jumper Setting

J9 close J16 2-3 J23 open

J11 1-2, 3-4, 5-6, 7-8 J17 close - -

J12 close J18 1-2, 3-4 - -

Figure 5. MC56F83000-EVK board with jumper settings

Hardware assembling

1. Plug the FRDM-MC-LVPMSM power stage to the MC56F83000-EVK board.

2. Connect the 3-phase motor wires to the screw terminals (J7) on the Freedom PMSM power stage.

3. Plug the USB cable from the USB host to the USB connector (Boot USB - J26) on the EVK board.

4. Plug the 24-V DC power supply to the DC power connector on the Freedom PMSM power stage.

NXP Semiconductors
Hardware setup

MCUXpresso SDK 3-Phase PMSM Control (DSC), Rev. 0, 12/2020
User Guide 8 / 45

Chapter 3
MC56F8xxxx series features and peripheral settings
This section describes the peripheral settings and application timing. The MC56F8xxxx MCU series contains a high-performance
56800EX DSP core. It combines the best features of Microcontrollers (MCUs) and powerful Digital Signal Processing (DSP)
capabilities in a single chip. The MC56F8xxxx MCU series are optimized for digital signal processing and applications ranging
from general embedded markets to motor control and power conversion. In addition, the MC56F8xxxx MCU series features
four scalable families with broad package and memory options, as well as the comprehensive MCUXpresso software and tools
ecosystem and low-cost development boards.

3.1 MC56F81xxx
The MC56F81xxx family is NXP’s new entry-level Digital Signal Controllers (DSC) product. This high-efficiency family is based
on the high-performance 56800EX DSP core with a frequency of up to 100 MHz. This family extends the DSC products’ cost
performance to the best. It is NXP’s first DSC product to integrate a Digital Signature Algorithm Security Subsystem (DSASS) and
a high-speed low-power operational amplifier.

The MC56F81xxx family offers extremely cost-effective solution for power conversion and motor control applications.

Figure 6. MC56F81xxx block diagram

3.1.1 MC56F81868 hardware timing and synchronization
Correct and precise timing is crucial for motor-control applications. Therefore, the motor-control-dedicated peripherals take care of
the timing and synchronization on the hardware layer. The PWM frequency is equal to the FOC calculation frequency. The timing
diagram is shown in MC56F81868 hardware timing and synchronization.

NXP Semiconductors

MCUXpresso SDK 3-Phase PMSM Control (DSC), Rev. 0, 12/2020
User Guide 9 / 45

Figure 7. Hardware timing and synchronization on MC56F81868

• The top signal shows the eFlexPWM SM0 counter. The dead time is emphasized at the PWM top and PWM bottom signals.

• The eFlexPWM SM0 also generates a trigger for the ADC with a short delay. This delay ensures correct current sampling at
duty cycles close to 100 %.

• When the ADC conversion is completed, the ADC ISR (ADC interrupt) is entered. The FOC calculation is done in this interrupt.

3.1.2 MC56F81686 peripheral settings
All peripherals are configured using the MCUXpresso Config Tools. The MCUXpresso Config Tools set pins, clocks,
and peripherals by generating corresponding sources (pin_mux.c .h, clock_config.c .h, pripherals.c .h, Flash_config.h,
freemaster_cfg.h, startup_bootloader_config.h, and startup_clock_mode.h). On MC56F81686, the eFlexPWM is used for 6-
channel PWM generation. The 12-bit cyclic ADC is used for the phase currents and DC-bus voltage measurement and the DC
bus over-current protection, which is realized by an internal comparator. The PIT Timer is used for slow interrupt generation. The
peripheral description is well described and depicted in the MCUXpresso Config Tools after opening mc_pmsm.mex. For more
information about the MCUXpresso Config Tools, see MCUXpresso Config Tools.

3.2 MC56F83xxx
The MC56F83xxx family is NXP’s performance level digital signal controller product and the world's first DSC product with both
USB and CAN-FD integrated. It leverages the high-performance 56800EX DSP core, with both core and bus frequency up to
100MHz. Plus the integration of all kinds of high-performance peripherals, this product extends the DSC performance to its
highest level, which is extremely suitable for high-performance digital power conversion and high-performance single/dual motor
control applications.

NXP Semiconductors
MC56F8xxxx series features and peripheral settings

MCUXpresso SDK 3-Phase PMSM Control (DSC), Rev. 0, 12/2020
User Guide 10 / 45

https://www.nxp.com/design/software/development-software/mcuxpresso-software-and-tools-/mcuxpresso-config-tools-pins-clocks-peripherals:MCUXpresso-Config-Tools

Figure 8. MC56F83xxx block diagram

3.2.1 MC56F83789 hardware timing and synchronization
Correct and precise timing is crucial for motor-control applications. Therefore, the motor-control-dedicated peripherals take care of
the timing and synchronization on the hardware layer. The PWM frequency is equal to the FOC calculation frequency. The timing
diagram is shown in Figure 9.

NXP Semiconductors
MC56F8xxxx series features and peripheral settings

MCUXpresso SDK 3-Phase PMSM Control (DSC), Rev. 0, 12/2020
User Guide 11 / 45

Figure 9. Hardware timing and synchronization on MC56F83789

• The top signal shows the SCT counter (SCT0 counter). The dead time is emphasized at the PWM top and PWM
bottom signals.

• The sct0_output[9] generates a trigger for the ADC with a short delay. This delay ensures correct current sampling at duty
cycles close to 100 %.

• When the ADC conversion is completed, the ADC ISR (ADC interrupt) is entered. The FOC calculation is done in this interrupt.

3.2.2 MC56F83789 peripheral settings
All peripherals are configured using the MCUXpresso Config Tools. The MCUXpresso Config Tools set pins, clocks,
and peripherals by generating corresponding sources (pin_mux.c .h, clock_config.c .h, pripherals.c .h, freemaster_cfg.h, and
Flash_config.h). On MC56F83789, the eFlexPWM is used for 6-channel PWM generation. The 12-bit cyclic ADC is used for
the phase currents and DC-bus voltage measurement and the DC bus over-current protection, which is realized by an internal
comparator. The PIT Timer is used for the slow interrupt generation. The peripherals are well described and depicted in the
MCUXpresso Config Tools after opening mc_pmsm.mex. For more information about the MCUXpresso Config Tools, see
MCUXpresso Config Tools.

3.3 CPU load and memory usage
The following information applies to the application built using the CodeWarrior v11.1 IDE in the Debug and Release
configurations with the compiler updated to build 1146. The below tables show the memory usage and CPU load. The memory
usage is calculated from the .map linker file, including the 4-KB FreeMASTER recorder buffer allocated in RAM. The CPU load
is measured using the QuadTimer, which is driven directly by the CPU clock. The CPU load is dependent on the fast-loop (FOC
calculation) and slow-loop (speed loop) frequencies. In this case, it applies to the fast-loop frequency of 10 KHz and the slow-loop
frequency of 1 KHz. The total CPU load is calculated using the following equations:

NXP Semiconductors
MC56F8xxxx series features and peripheral settings

MCUXpresso SDK 3-Phase PMSM Control (DSC), Rev. 0, 12/2020
User Guide 12 / 45

https://www.nxp.com/design/software/development-software/mcuxpresso-software-and-tools-/mcuxpresso-config-tools-pins-clocks-peripherals:MCUXpresso-Config-Tools

Where:

CPUfast - the CPU load taken by the fast loop.

cyclesfast - the number of cycles consumed by the fast loop.

ffast - the frequency of the fast-loop calculation (10 KHz).

fCPU - the CPU frequency.

CPUslow - the CPU load taken by the slow loop.

cyclesslow - the number of cycles consumed by the slow loop.

fslow - the frequency of the slow-loop calculation (1 KHz).

CPUtotal - the total CPU load consumed by the motor control.

Table 4. MC56F81686 load and memory usage

Debug configuration Release configuration

Program flash 59 592 B 40 682 B

RAM 14 366 B 12 826 B

Maximum CPU load (core 0) 68.7 % 66.3 %

The RAM usage above includes also 7040 B of FreeMASTER TSA table and 1024 B of FreeMASTER recorder
which can be eliminated in the final code. The stack that consumes the RAM is 1280 B and it can be decreased in
the final code. The CPU load can be decreased by putting some key functions into the RAM.

 NOTE

Table 5. MC56F83789 load and memory usage

Debug configuration Release configuration

Program flash 60 092 B 41 216 B

RAM 18 718 B 17 158 B

Maximum CPU load (core 0) 38.8 % 36.1 %

The RAM usage above includes also 7040 B of FreeMASTER TSA table and 4096 B of FreeMASTER recorder
which can be eliminated in the final code. The stack that consumes RAM is 2560 B and it can be decreased in the
final code. The CPU load can be decreased by putting some key functions into the RAM.

 NOTE

NXP Semiconductors
MC56F8xxxx series features and peripheral settings

MCUXpresso SDK 3-Phase PMSM Control (DSC), Rev. 0, 12/2020
User Guide 13 / 45

Chapter 4
Project file and IDE workspace structure
All the necessary files are included in one package, which simplifies the distribution and decreases the size of the final package.
The folder structure in the unpacked package is different from the folder structure of the project cloned into a user's workspace.
Most users clone the project using the MCUXpresso Config Tools into their workspace from the SDK package, so the folder
structure of the cloned project is described below. The cloned project includes all the necessary files for the MCU operation, the
motor-identification functions, the scalar and vector control of the motor, and the FreeMASTER MCAT project. This project serves
for development and testing purposes.

4.1 PMSM project structure
The directory tree of a cloned PMSM project is shown in Figure 10.

Figure 10. Directory tree

The main project folder contains the following folders and files:

• .project and .cproject—project files for CodeWarrior IDE.

• mc_pmsm.mex—configuration file for MCUXpresso Config Tools.

• board/board.c and .h—contains the definitions and functions related to the board like LEDs and buttons.

• board/clock_config.c and .h—contains the MCU clock setup functions. These files are generated by the MCUXpresso
Config Tools.

NXP Semiconductors

MCUXpresso SDK 3-Phase PMSM Control (DSC), Rev. 0, 12/2020
User Guide 14 / 45

• board/peripherals.c and .h—contains the MCU peripherals' setup functions. These files are generated by the MCUXpresso
Config Tools.

• board/pin_mux.c and .h—contains the MCU pins' setup functions. These files are generated by the MCUXpresso
Config Tools.

• device—contains the MCU-related files like registers' definitions.

• doc—documentaion folder.

• drivers—contains the necessary SDK drivers for MCU peripherals.

• freemaster—contains the FreeMASTER embedded part of code.

• mc_algorithms—contains the main control algorithms used to control the FOC and speed control loop.

• mc_drivers—contains the source and header files used to initialize and run motor-control applications.

• mc_identification—contains the source code for the automated parameter-identification routines of the motor.

• mc_state_machine—contains the software routines that are executed when the application is in a particular state or
state transition.

• motor_control/freemaster—contains the FreeMASTER *.pmp file and all MCAT-related files.

• rtcesl—Real-Time Control Embedded Software Libraries with elementary algorithms used to build the FOC.

• source/fm_tsa_pmsm.c and .h—TSA tables with variables used in FreeMASTER.

• source/freemaster_cfg.h—FreeMASTER configuration file containing FreeMASTER communication and features setup.This
file is generated by the MCUXpresso Config Tools.

• source/m1_pmsm_appconfig.h—contains the definitions of constants for the application control processes, parameters of
the motor and controllers, and the constants for other vector control-related algorithms. When you tailor the application
for a different motor using the Motor Control Application Tuning (MCAT) tool, this file is re-generated at the end of the
tuning process.

• source/main.c—basic application initialization (enabling interrupts), subroutines for accessing the MCU peripherals, and
interrupt service routines. The FreeMASTER communication is performed in the background infinite loop.

• mcdrv.h—this file ensures the abstraction of the mcdrv_evkmc56fxxxxx.h file inclusion.

• mcdrv_evkmc56fxxxxx.c and .h—contains the motor-control peripheral drivers' initialization functions and macros for
changing ADC channels assigned to the phase currents and board voltage. These files are specific for the board and
MCU used.

NXP Semiconductors
Project file and IDE workspace structure

MCUXpresso SDK 3-Phase PMSM Control (DSC), Rev. 0, 12/2020
User Guide 15 / 45

Chapter 5
Motor-control peripheral initialization
The motor-control peripherals are initialized by the MCUXpresso Config Tools. The motor-control drivers are initialized by calling
the MCDRV_Init_M1() function during the MCU startup after the peripherals are configured. All motor-control drivers' initialization
functions are in the mcdrv_evkmc56f8xxxx.c source file and the mcdrv_evkmc56f8xxxx.h header file. The definitions specified
by the user are also in these files. The features provided by the functions are the 3-phase PWM generation and 3-phase current
measurement, as well as the DC-bus voltage and auxiliary quantity measurement. The principles of both the 3-phase current
measurement and the PWM generation using the Space Vector Modulation (SVM) technique are described in Sensorless PMSM
Field-Oriented Control (document DRM148).

The mcdrv_evkmc56f8xxxx.h header file provides several macros that can be defined by the user:

• M1_PWM_FREQ—the value of this definition must correspond to the actual PWM frequency.

• M1_FOC_FREQ_VS_PWM_FREQ—enables the user to call the fast loop interrupt at every first, second, third, or nth PWM
reload. This feature is not supported on DSCs and this macro must be kept at 1.

• M1_SPEED_LOOP_FREQ—the value of this definition must correspond to the actual speed-loop frequency.

• M1_PWM_DEADTIME—the value of the PWM dead time in nanoseconds must correspond to the actual dead time setting in
eFlexPWM module.

• M1_PWM_PAIR_PH[A..C]—these macros enable a simple assignment of the physical motor phases to the PWM periphery
channels (or submodules). Change the order of the motor phases this way.

• M1_ADC[0,1]_PH_[A..C]—these macros are used to assign the ADC channels for the phase current measurement. The
general rule is that at least one of the phase currents must be measurable on both ADC converters and the two remaining
phase currents must be measurable on different ADC converters. The reason for this is that the selection of the phase current
pair to measure depends on the current SVM sector. If this rule is broken, a preprocessor error is issued. For more information
about the 3-phase current measurement, see Sensorless PMSM Field-Oriented Control (document DRM148).

• M1_ADC[0,1]_UDCB—this define is used to select the ADC channel for the measurement of the DC-bus voltage.

In the motor-control software, these API-serving ADC and PWM peripherals are available:

• The available APIs for the ADC are:

— bool_t M1_MCDRV_ADC_PERIPH_INIT()—this function is by default called during the ADC peripheral initialization
procedure invoked by the MCDRV_Init_M1() function and it should not be called again after the peripheral initialization
is done.

— bool_t M1_MCDRV_CURR_3PH_CHAN_ASSIGN(mcdrv_adc_t*)—calling this function assigns proper ADC channels
for the next 3-phase current measurement based on the SVM sector. The function always returns true.

— bool_t M1_MCDRV_CURR_3PH_CALIB_INIT(mcdrv_adc_t*)—this function initializes the phase-current channel-offset
measurement. This function always returns true.

— bool_t M1_MCDRV_CURR_3PH_CALIB(mcdrv_adc_t*)—this function reads the current information from the
unpowered phases of a stand-still motor and filters them using moving average filters. The goal is to obtain the
value of the measurement offset. The length of the window for moving the average filters is set to eight samples by
default. This function always returns true.

— bool_t M1_MCDRV_CURR_3PH_CALIB_SET(mcdrv_adc_t*)—this function asserts the phase-current measurement
offset values to the internal registers. Call this function after a sufficient number of M1_MCDRV_CURR_3PH_CALIB()
calls. This function always returns true.

— bool_t M1_MCDRV_ADC_GET(mcdrv_adc_t*)—this function reads and calculates the actual values of the 3-phase
currents, DC-bus voltage, and auxiliary quantity. This function always returns true.

• The available APIs for the PWM are:

NXP Semiconductors

MCUXpresso SDK 3-Phase PMSM Control (DSC), Rev. 0, 12/2020
User Guide 16 / 45

https://www.nxp.com/doc/DRM148
https://www.nxp.com/doc/DRM148

— bool_t M1_MCDRV_PWM_PERIPH_INIT()—this function is by default called during the PWM periphery initialization
procedure invoked by the MCDRV_Init_M1() function.

— bool_t M1_MCDRV_PWM3PH_SET(mcdrv_pwma_pwm3ph_t*)—this function updates the PWM phase duty cycles.
This function always returns true.

— bool_t M1_MCDRV_PWM3PH_EN(mcdrv_pwma_pwm3ph_t*)—calling this function enables all PWM channels. This
function always returns true.

— bool_t M1_MCDRV_PWM3PH_DIS (mcdrv_pwma_pwm3ph_t*)—calling this function disables all PWM channels. This
function always returns true.

— bool_t M1_MCDRV_PWM3PH_FLT_GET(mcdrv_pwma_pwm3ph_t*)—this function returns the state of the over-
current fault flags and automatically clears the flags (if set). This function returns true when an over-current event occurs.
Otherwise, it returns false.

NXP Semiconductors
Motor-control peripheral initialization

MCUXpresso SDK 3-Phase PMSM Control (DSC), Rev. 0, 12/2020
User Guide 17 / 45

Chapter 6
User interface
The application contains the demo mode to demonstrate motor rotation. You can operate it using a button on the board or via
FreeMASTER. The FreeMASTER application consists of two parts: the PC application used for variable visualization and the set
of software drivers running in the embedded application. Data is transferred between the PC and the embedded application via
the serial interface. This interface is provided by the debugger or the virtual serial port circuit included in the boards.

The application can be remotely controlled using FreeMASTER (chapter Remote control using FreeMASTER):

• Using the Motor Control Application Tuning (MCAT) interface in the “Control Structure” tab or the “Application control” tab
(controlling the demo mode).

• Setting a variable in the FreeMASTER Variable Watch.

If you are using your own motor (different from the default motors), make sure to identify all motor parameters. The automated
parameter identification is described in the following sections.

NXP Semiconductors

MCUXpresso SDK 3-Phase PMSM Control (DSC), Rev. 0, 12/2020
User Guide 18 / 45

Chapter 7
Remote control using FreeMASTER
This section provides information about the tools and recommended procedures to control the sensorless PMSM Field-Oriented
Control (FOC) application using FreeMASTER. The application contains the embedded-side driver of the FreeMASTER real-time
debug monitor and data visualization tool for communication with the PC. It supports non-intrusive monitoring, as well as the
modification of target variables in real time, which is very useful for the algorithm tuning. Besides the target-side driver, the
FreeMASTER tool requires the installation of the PC application as well. You can download FreeMASTER 3.x at www.nxp.com/
freemaster. To run the FreeMASTER application including the MCAT tool, double-click the pmsm_frac_dsc.pmp file located in the
pack_motor_\middleware\motor_control\freemaster folder. The FreeMASTER application starts and the environment is created
automatically, as defined in the *.pmp file.

7.1 Establishing FreeMASTER communication
The remote operation is provided by FreeMASTER via the USB interface. Perform the following steps to control a PMSM motor
using FreeMASTER:

1. Download the project from the CodeWarrior IDE to the MCU and run it. It is J26 on MC56F81000-EVK and J14 on
MC56F83000-EVK to connect with the PC. Be sure to install the CP210x USB to UART bridge driver on the PC before
the connection.

2. Open the FreeMASTER file pmsm_frac_dsc.pmp. The PMSM project uses the TSA by default, so it is not necessary to
select a symbol file for FreeMASTER.

3. Click the communication button (the red “STOP” button in the top left-hand corner) to establish the communication. It may
take couple of seconds to establish the connection, depending on the size of the TSA table.

Figure 11. Red “STOP” button placed in top left-hand corner

4. If the communication is established successfully, the FreeMASTER communication status in the bottom right-hand corner
changes from “Not connected” to “RS232 UART Communication; COMxx; speed=115200”. Otherwise, the FreeMASTER
warning popup window appears.

Figure 12. FreeMASTER—communication is established successfully

5. Press F5 to reload the MCAT HTML page and check the App ID.

6. Control the PMSM motor using the MCAT “Control structure” tab, the MCAT “Application demo control” tab, or by directly
writing to a variable in a variable watch.

7. If you rebuild and download the new code to the target, turn the FreeMASTER application off and on.

If the communication is not established successfully, perform the following steps:

1. Go to the “Project -> Options -> Comm” tab and make sure that the correct COM port is selected and the communication
speed is set to 115200 bps.

NXP Semiconductors

MCUXpresso SDK 3-Phase PMSM Control (DSC), Rev. 0, 12/2020
User Guide 19 / 45

http://www.nxp.com/freemaster
http://www.nxp.com/freemaster

Figure 13. FreeMASTER communication setup window

2. If “Silicon Labs CP210x USB to UART Bridge” is not printed out in the message box next to the “Port” drop-down menu,
unplug and then plug in the USB cable and reopen the FreeMASTER project.

Make sure to supply your development board from a sufficient energy source. Sometimes the PC USB port is not sufficient to
supply the development board.

7.2 MCAT FreeMASTER interface (Motor Control Application Tuning)
The PMSM sensor/sensorless FOC application can be easily controlled and tuned using the Motor Control Application Tuning
(MCAT) plug-in for PMSM. The MCAT for PMSM is a user-friendly modular page, which runs within FreeMASTER. The tool
consists of the tab menu, tuning mode selector, and workspace shown in Figure 14. Each tab from the tab menu represents
one sub-module which enables you to tune or control different aspects of the application. Besides the MCAT page for PMSM,
several scopes, recorders, and variables in the project tree are predefined in the FreeMASTER project file to further simplify the
motor parameter tuning and debugging. When the FreeMASTER is not connected to the target, the “App ID” line shows “offline”.
When the communication with the target MCU is established using a correct software, the “App ID” line displays the board name
“pmsm_used_board” and all stored parameters for the given MCU are loaded. If the connection is established and the board ID
is not shown, press F5 to reload the MCAT HTML page.

NXP Semiconductors
Remote control using FreeMASTER

MCUXpresso SDK 3-Phase PMSM Control (DSC), Rev. 0, 12/2020
User Guide 20 / 45

Figure 14. MCAT layout

In the default configuration, the following tabs are available:

• “Introduction”—welcome page with the PMSM sensor/sensorless FOC diagram and a short description of the application.

• “Motor Identif”—PMSM semi-automated parameter measurement control page. The PMSM parameter identification is more
closely described further on in this document.

• “Parameters”—this page enables you to modify the motor parameters, specification of hardware and application scales,
alignment, and fault limits.

• “Current Loop”—current loop PI controller gains and output limits.

• “Speed Loop”—this tab contains fields for the specification of the speed controller proportional and integral gains, as well as
the output limits and parameters of the speed ramp.

• “Sensorless”—this page enables you to tune the parameters of the BEMF observer, tracking observer, and open-loop startup.

• “Control Struc”—this application control page enables you to select and control the PMSM using different techniques
(scalar—Volt/Hertz control, voltage FOC, current FOC and speed FOC). The application state is also shown in this tab.

• “Output file”—this tab shows all the calculated constants that are required by the PMSM sensorless FOC application. It is also
possible to generate the m1_pmsm_appconfig.h file, which is then used to preset all application parameters permanently at
the project rebuild.

• “App Control”—this tab contains the graphical elements like the speed gauge, DC-bus voltage measurement bar, and variety
of switches which enable a simple, quick, and user-friendly application control. The fault clearing and the demo mode (which
sets various predefined required speeds over time) can be also controlled from here.

NXP Semiconductors
Remote control using FreeMASTER

MCUXpresso SDK 3-Phase PMSM Control (DSC), Rev. 0, 12/2020
User Guide 21 / 45

Most tabs offer the possibility to immediately load the parameters specified in the MCAT into the target using the “Update target”
button and save (or restore) them from the hard drive file using the “Reload Data” and “Store Data” buttons.

The following sections provide simple instructions on how to identify the parameters of a connected PMSM motor and how to
appropriately tune the application.

Control structure—“Control Struc” tab

The application can be controlled through the “Control Struc” tab, which is shown in Figure 15. The state control area on the left
side of the screen shows the current application state and enables you to turn the main application switch on or off (turning a
running application off disables all PWM outputs). The “Cascade Control Structure” area is placed in the right-hand side of the
screen. Here you can choose between the scalar control and the FOC control using the appropriate buttons. The selected parts
of the FOC cascade structure can be enabled by selecting “Voltage FOC”, “Current FOC”, and “Speed FOC”. This is useful for
application tuning and debugging.

Figure 15. MCAT for PMSM control page

The scalar control diagram is shown in Figure 16. It is the simplest type of motor-control techniques. The ratio between the
magnitude of the stator voltage and the frequency must be kept at the nominal value. Hence, the control method is sometimes
called Volt per Hertz (or V/Hz). The position estimation BEMF observer and tracking observer algorithms (see Sensorless
PMSM Field-Oriented Control (document DRM148) for more information) run in the background, even if the estimated position
information is not directly used. This is useful for the BEMF observer tuning.

NXP Semiconductors
Remote control using FreeMASTER

MCUXpresso SDK 3-Phase PMSM Control (DSC), Rev. 0, 12/2020
User Guide 22 / 45

https://www.nxp.com/doc/DRM148

Figure 16. Scalar control mode

The block diagram of the voltage FOC is in Figure 17. Unlike the scalar control, the position feedback is closed using the BEMF
observer and the stator voltage magnitude is not dependent on the motor speed. Both the d-axis and q-axis stator voltages can
be specified in the “Ud_req” and “Uq_req” fields. This control method is useful for the BEMF observer functionality check.

Figure 17. Voltage FOC control mode

The current FOC (or torque) control requires the rotor position feedback and the currents transformed into a d-q reference frame.
There are two reference variables (“Id_req” and “Iq_req”) available for the motor control, as shown in the block diagram in Figure
18. The d-axis current component "isd_req" is responsible for the rotor flux control. The q-axis current component of the current
"isq_req" generates torque and, by its application, the motor starts running. By changing the polarity of the current "isq_req", the
motor changes the direction of rotation. Supposing that the BEMF observer is tuned correctly, the current PI controllers can be
tuned using the current FOC control structure.

NXP Semiconductors
Remote control using FreeMASTER

MCUXpresso SDK 3-Phase PMSM Control (DSC), Rev. 0, 12/2020
User Guide 23 / 45

Figure 18. Current (torque) control mode

The speed PMSM sensor/sensorless FOC (its diagram is shown in Figure 19) is activated by enabling the speed FOC control
structure. Enter the required speed into the “Speed_req” field. The d-axis current reference is held at 0 during the entire
FOC operation.

Figure 19. Speed FOC control mode

Application demo control—“App control” tab

After launching the application and performing all necessary settings, you can control the PMSM motor using the FreeMASTER
application demo control page. This page contains:

• Speed gauge—shows the actual and required speeds.

• Required speed slider—sets up the required speed.

• DC-bus voltage—shows the actual DC-bus voltage.

NXP Semiconductors
Remote control using FreeMASTER

MCUXpresso SDK 3-Phase PMSM Control (DSC), Rev. 0, 12/2020
User Guide 24 / 45

• Current iq—shows the actual torque-producing current.

• Current limitation—sets up the torque-producing current limit.

• Demo mode on/off button—turns the demonstration mode on/off.

• RUN/STOP PWM button—runs/stops the whole application (sets the PWM on and off).

• Notification—shows the notification about the actual application state (or faults).

Figure 20. FreeMASTER control page

The following are the basic instructions for controlling a motor:

• To start the motor, set the required speed using the speed slider.

• In case of a fault, click on the fault notification to clear the fault.

• Click the “Demo Mode On/Off” button to turn the demonstration mode on/off.

• Click the “RUN/STOP” button to stop the motor.

NXP Semiconductors
Remote control using FreeMASTER

MCUXpresso SDK 3-Phase PMSM Control (DSC), Rev. 0, 12/2020
User Guide 25 / 45

Chapter 8
Identifying parameters of user motor using MCAT
This section provides a guide on how to run your own motor or tune the default motor in several steps. It is highly recommended
to go through all the steps carefully to eliminate any possible issues during the tuning process. The state diagram in Figure 21
shows a typical PMSM sensor/sensorless control tuning process.

Because the model-based control methods of the PMSM drives are the most effective and usable, obtaining an accurate model of
a motor is an important part of the drive design and control. For the implemented FOC algorithms, it is necessary to know the value
of the stator resistance Rs, direct inductance Ld, quadrature inductance Lq, and BEMF constant Ke. If your connected PMSM
motor is not the default Teknic or Linix motor described in the previous sections, identify the parameters of your motor first. Each
tuning phase is described in more detail in the following sections.

Figure 21. Running a new PMSM

Power stage characterization

Each inverter introduces the total error voltage Uerror, which is caused by the dead time, current clamping effect, and transistor
voltage drop. The total error voltage Uerror depends on the phase current is and this dependency is measured during the
power stage characterization process. An example of the inverter error characteristic is shown in Figure 22. The power stage
characterization is a part of the MCAT and it can be controlled from the “Motor Identif” tab. To perform the characterization,
connect the motor with a known stator resistance Rs and enter this value into the “Calib Rs” field. Then specify the “Calibration
Range”, which is the range of the stator current is, in which the measurement of Uerror is performed. Start the characterization by
pressing the “Calibrate” button. The characterization gradually performs 65 isd current steps (from is = -Is,calib to is = Is,calib) with
each taking 300 ms, so be aware that the process takes about 20 seconds and the motor must withstand this load. The acquired

NXP Semiconductors

MCUXpresso SDK 3-Phase PMSM Control (DSC), Rev. 0, 12/2020
User Guide 26 / 45

characterization data is saved to a file and used later for the phase voltage correction during the Rs measurement process. The
following Rs measurement can be done with the Is,calib maximum current. It is recommended to use a motor with a low Rs for
characterization purposes.

Figure 22. Example power stage characteristic

The power stage characterization is necessary only for the user hardware board. When the NXP power stages (TWR, FRDM, or
HVP) are used with the application, the characterization process can be omitted. The acquired characterization data is saved into
a file, so it is necessary to do it only once for a given hardware.

Stator resistance measurement

The stator resistance Rs is measured using the DC current IphN value, which is applied to the motor for 1200 ms. The DC voltage
UDC is held using current controllers. Their parameters are selected conservatively to ensure stability. The stator resistance Rs is
calculated using the Ohm’s law as:

Stator inductance

For the stator inductance (Ls) identification purposes, a sinusoidal measurement voltage is applied to the motor. During the LS
measurement, the voltage control is enabled. The frequency and amplitude of the sinusoidal voltage are obtained before the actual
measurement, during the tuning process. The tuning process begins with a 0-V amplitude and the F start frequency, which are
applied to the motor. The amplitude is gradually increased by Ud inc up to a half of the DC-bus voltage (DCbus/2), until Id ampl is
reached. If Id ampl is not reached even with the DCbus/2 and F start, the frequency of the measuring signal is gradually decreased
by F dec down to F min again, until Id ampl is reached. If Id ampl is still not reached, the measurement continues with DCbus/2
and F min. The tuning process is shown in Figure 23.

NXP Semiconductors
Identifying parameters of user motor using MCAT

MCUXpresso SDK 3-Phase PMSM Control (DSC), Rev. 0, 12/2020
User Guide 27 / 45

Figure 23. Tuning Ls measuring signal

When the tuning process is complete, the sinusoidal measurement signal (with the amplitude and frequency obtained during the
tuning process) is applied to the motor. The total impedance of the RL circuit is then calculated from the voltage and current
amplitudes and LS is calculated from the total impedance of the RL circuit.

The direct inductance Ld and quadrature inductance Lq measurements are made in the same way as LS. Before the Ld and
Lq measurement is made, DC current is applied to the D-axis, which aligns the rotor. For the Ld measurement, the sinusoidal
voltage is applied in the D-axis. For the Lq measurement, the sinusoidal voltage is applied in the Q-axis.

BEMF constant measurement

Before the actual BEMF constant (Ke) measurement, the MCAT tool calculates the current controllers and BEMF observer
constants from the previously measured Rs, Ld, and Lq. To measure Ke, the motor must spin. Id is controlled through Id meas and the
electrical open-loop position is generated by integrating the required speed, which is derived from Nnom. When the motor reaches
the required speed, the BEMF voltages obtained by the BEMF observer are filtered and Ke is calculated:

NXP Semiconductors
Identifying parameters of user motor using MCAT

MCUXpresso SDK 3-Phase PMSM Control (DSC), Rev. 0, 12/2020
User Guide 28 / 45

When Ke is being measured, you have to visually check to determine whether the motor is spinning properly. If the motor is not
spinning properly, perform these steps:

• Ensure that the number of pp is correct. The required speed for the Ke measurement is also calculated from pp. Therefore,
inaccuracy in pp causes inaccuracy in the resulting Ke.

• Increase Id meas to produce higher torque when spinning during the open loop.

• Decrease Nnom to decrease the required speed for the Ke measurement.

Number of pole-pair assistant

The number of pole-pairs cannot be measured without a position sensor. However, there is a simple assistant to determine the
number of pole-pairs (pp). The number of the pp assistant performs one electrical revolution, stops for a few seconds, and then
repeats it. Because the pp value is the ratio between the electrical and mechanical speeds, it can be determined as the number
of stops per one mechanical revolution. It is recommended not to count the stops during the first mechanical revolution because
the alignment occurs during the first revolution and affects the number of stops. During the pp measurement, the current loop is
enabled and the Id current is controlled to Id meas. The electrical position is generated by integrating the open-loop speed. If the
rotor does not move after the start of the number of pp assistant, stop the assistant, increase Id meas, and restart the assistant.

8.1 PMSM electrical and parameters measurement process
If the parameters of your own motor are known from the datasheet, you can enter them in the "Parameters" tab. If you don't know
the parameters of your motor, you have to use automatic parameter identification.

The motor identification process can be controlled and set up in the MCAT “Motor Identif” tab, which is shown in Figure 24. To
measure your own motor, follow these steps:

• Select your hardware board. Choose between the standard NXP hardware or use your own. If you use your own
hardware, specify its scales (“I max” and “U DCB max” in the “Parameters” menu tab).

• If you don’t know the number of motor’s pole-pairs, use the number of pole-pair assistant and compute the number of
motor rotor stops in one turn.

• If you use your own hardware for the first time (other than NXP boards), perform the power stage characterization.

• Enter the motor measurement parameters and start the measurement by pressing the “Measure electrical” button. You
can observe which parameter is being measured in the “Status” bar.

NXP Semiconductors
Identifying parameters of user motor using MCAT

MCUXpresso SDK 3-Phase PMSM Control (DSC), Rev. 0, 12/2020
User Guide 29 / 45

Figure 24. PMSM identification tab

Figure 25. Measurement process diagram

During the measurement, faults and warnings may occur. Do not confuse these faults for the application faults, such as
overcurrent, undervoltage, and so on. The list of these faults with their description and possible troubleshooting is shown in
Figure 25.

NXP Semiconductors
Identifying parameters of user motor using MCAT

MCUXpresso SDK 3-Phase PMSM Control (DSC), Rev. 0, 12/2020
User Guide 30 / 45

Table 6. Measurement faults and warnings

Fault no. Fault description Fault reason Troubleshooting

1 Motor not connected Id > 50 mA cannot be
reached with the available

DC-bus voltage.

Check that the motor is
connected.

2 Rs too high for calibration The calibration cannot be
reached with the available

DC-bus voltage.

Use a motor with a lower
Rs for the power stage

characterization.

3 Current measurement Is DC
not reached

The user-defined Is DC
was not reached, so the

measurement was taken with
a lower Is DC.

Raise the DC-bus voltage to
reach the Is DC or lower the
Is DC to avoid this warning.

4 Current amplitude
measurement Is AC not

reached

The user-defined Is AC
was not reached, so the

measurement was taken with
a lower Is AC.

Raise the DC-bus voltage or
lower the Fmin to reach the
Is AC or lower the Is AC to

avoid this warning.

5 Wrong characteristic data The characteristic data,
which is used for the

voltage correction, does not
correspond to the actual

power stage.

Select the user hardware and
perform the calibration.

8.2 Initial configuration setting and update
1. Open the PMSM control application FreeMASTER project containing the dedicated MCAT plug-in module.

2. Select the “Parameters” tab.

3. Leave the measured motor parameters or specify the parameters manually. The motor parameters can be obtained from
the motor data sheet or using the PMSM parameters measurement procedure described in PMSM Electrical Parameters
Measurement (document AN4680). All parameters provided in Table 7 are accessible. The motor inertia J expresses the
overall system inertia and can be obtained using a mechanical measurement. The J parameter is used to calculate the
speed controller constant. However, the manual controller tuning can also be used to calculate this constant.

Table 7. MCAT motor parameters

Parameter Units Description Typical range

pp [-] Motor pole pairs 1-10

Rs [Ω] 1-phase stator resistance 0.3-50

Ld [H] 1-phase direct inductance 0.00001-0.1

Lq [H] 1-phase
quadrature inductance

0.00001-0.1

Ke [V.sec/rad] BEMF constant 0.001-1

J [kg.m2] System inertia 0.00001-0.1

Iph nom [A] Motor nominal phase current 0.5-8

Uph nom [V] Motor nominal phase voltage 10-300

N nom [rpm] Motor nominal speed 1000-2000

NXP Semiconductors
Identifying parameters of user motor using MCAT

MCUXpresso SDK 3-Phase PMSM Control (DSC), Rev. 0, 12/2020
User Guide 31 / 45

https://www.nxp.com/doc/AN4680

4. Set the hardware scales—the modification of these two fields is not required when a reference to the standard power stage
board is used. These scales express the maximum measurable current and voltage analog quantities.

5. Check the fault limits—these fields are not accessible in the “Basic” mode and are calculated using the motor parameters
and hardware scales (see Table 8).

Table 8. Fault limits

Parameter Units Description Typical range

U DCB trip [V] Voltage value at which
the external braking resistor
switch turns on

U DCB Over ~ U DCB max

U DCB under [V] Trigger value at which the
undervoltage fault is detected

0 ~ U DCB Over

U DCB over [V] Trigger value at which the
overvoltage fault is detected

U DCB Under ~ U max

N over [rpm] Trigger value at which the
overspeed fault is detected

N nom ~ N max

N min [rpm] Minimal actual speed value for
the sensorless control

(0.05~0.2) *N max

6. Check the application scales—these fields are not accessible in the “Basic” mode and are calculated using the motor
parameters and hardware scales.

Table 9. Application scales

Parameter Units Description Typical range

N max [rpm] Speed scale >1.1 * N nom

E max [V] BEMF scale ke* Nmax

kt [Nm/A] Motor torque constant -

7. Check the alignment parameters— The parameters express the required voltage value applied to the motor during the rotor
alignment and its duration.

8. Click the “Store Data” button to save the modified parameters into the inner file.

8.3 Control structure modes
1. Select the scalar control by clicking the “DISABLED” button in the “Scalar Control” section. The button color changes to red

and the text changes to “ENABLED”.

2. Turn the application switch on. The application state changes to “RUN”.

3. Set the required frequency value in the “Freq_req” field; for example, 15 Hz in the “Scalar Control” section. The motor starts
running (Figure 26).

NXP Semiconductors
Identifying parameters of user motor using MCAT

MCUXpresso SDK 3-Phase PMSM Control (DSC), Rev. 0, 12/2020
User Guide 32 / 45

Figure 26. MCAT scalar control

4. Select the “Phase Currents” recorder from the “Scalar & Voltage Control” FreeMASTER project tree.

5. The optimal ratio for the V/Hz profile can be found by changing the V/Hz factor directly or using the “UP/DOWN” buttons.
The shape of the motor currents should be close to a sinusoidal shape (Figure 27).

Figure 27. Phase currents

6. Select the “Position” recorder to check the observer functionality. The difference between the “Position Electrical Scalar”
and the “Position Estimated” should be minimal (see Figure 28) for the Back-EMF position and speed observer to work
properly. The position difference depends on the motor load. The higher the load, the bigger the difference between the
positions due to the load angle.

NXP Semiconductors
Identifying parameters of user motor using MCAT

MCUXpresso SDK 3-Phase PMSM Control (DSC), Rev. 0, 12/2020
User Guide 33 / 45

Figure 28. Generated and estimated positions

7. If an opposite speed direction is required, set a negative speed value into the “Freq_req” field.

8. The proper observer functionality and the measurement of analog quantities is expected at this step.

9. Enable the voltage FOC mode by clicking the “DISABLED” button in the “Voltage FOC” section while the main application
switch is turned off.

10. Switch the main application switch on and set a non-zero value in the “Uq_req” field. The FOC algorithm uses the estimated
position to run the motor.

8.4 Alignment tuning
For the alignment parameters, navigate to the “Tab” menu and select “Parameters”. The alignment procedure sets the rotor to an
accurate initial position and enables you to apply full start-up torque to the motor. The rotor-alignment parameters are available
for editing in the “Expert” mode. A correct initial position is needed mainly for high start-up loads (compressors, washers, and so
on). The aim of the alignment is to have the rotor in a stable position, without any oscillations before the startup.

1. The alignment voltage is the value applied to the d-axis during the alignment. Increase this value for a higher shaft load.

2. The alignment duration expresses the time when the alignment routine is called. Tune this parameter to eliminate rotor
oscillations or movement at the end of the alignment process.

8.5 Current loop tuning
The parameters for the current D, Q, and PI controllers are fully calculated in the “Basic” mode using the motor parameters and
no action is required in this mode. If the calculated loop parameters do not correspond to the required response, the bandwidth
and attenuation parameters can be tuned.

1. Lock the motor shaft.

2. Set the required loop bandwidth and attenuation and click the “Update Target” button in the “Current Loop” tab. The tuning
loop bandwidth parameter defines how fast the loop response is whilst the tuning loop attenuation parameter defines the
actual quantity overshoot magnitude.

3. Select the “Current Controller Id” recorder.

4. Select the “Control Structure” tab, switch to “Current FOC”, set the “Iq_req” field to a very low value (for example 0.01), and
set the required step in “Id_req”. The control loop response is shown in the recorder.

5. Tune the loop bandwidth and attenuation until you achieve the required response. The example waveforms show the
correct and incorrect settings of the current loop parameters:

• The loop bandwidth is low (110 Hz) and the settling time of the Id current is long (Figure 29).

NXP Semiconductors
Identifying parameters of user motor using MCAT

MCUXpresso SDK 3-Phase PMSM Control (DSC), Rev. 0, 12/2020
User Guide 34 / 45

Figure 29. Slow step response of the Id current controller

• The loop bandwidth (400 Hz) is optimal and the response time of the Id current is sufficient (see Figure 30).

Figure 30. Optimal step response of the Id current controller

• The loop bandwidth is high (700 Hz) and the response time of the Id current is very fast, but with oscillation and
overshoot (see Figure 31).

NXP Semiconductors
Identifying parameters of user motor using MCAT

MCUXpresso SDK 3-Phase PMSM Control (DSC), Rev. 0, 12/2020
User Guide 35 / 45

Figure 31. Fast step response of the Id current controller

8.6 Speed ramp tuning
1. The speed command is applied to the speed controller through a speed ramp. The ramp function contains two increments

(up and down) which express the motor acceleration and deceleration per second. If the increments are very high, they can
cause an overcurrent fault during acceleration and an overvoltage fault during deceleration. In the “Speed” scope, you can
see whether the “Speed Actual Filtered” waveform shape equals the “Speed Ramp” profile.

2. The increments are common for the scalar and speed control. The increment fields are in the “Speed & Pos” tab and
accessible in both tuning modes. Clicking the “Update Target” button applies the changes to the MCU. An example speed
profile is shown in Figure 32. The ramp increment down is set to 500 rpm/sec and the increment up is set to 3000 rpm/sec.

3. The start-up ramp increment is in the “Sensorless” tab and its value is usually higher than that of the speed loop ramp.

Figure 32. Speed profile

NXP Semiconductors
Identifying parameters of user motor using MCAT

MCUXpresso SDK 3-Phase PMSM Control (DSC), Rev. 0, 12/2020
User Guide 36 / 45

8.7 Open loop startup
1. The start-up process can be tuned by a set of parameters located in the “Sensorless” tab. Two of them (ramp increment

and current) are accessible in both tuning modes. The start-up tuning can be processed in all control modes besides the
scalar control. Setting the optimal values results in a proper motor startup. An example start-up state of low-dynamic drives
(fans, pumps) is shown in Figure 33.

2. Select the “Startup” recorder from the FreeMASTER project tree.

3. Set the start-up ramp increment typically to a higher value than the speed-loop ramp increment.

4. Set the start-up current according to the required start-up torque. For drives such as fans or pumps, the start-up torque is
not very high and can be set to 15 % of the nominal current.

5. Set the required merging speed—when the open-loop and estimated position merging starts, the threshold is mostly set in
the range of 5 % ~ 10 % of the nominal speed.

6. Set the merging coefficient—in the position merging process duration, 100 % corresponds to a half of an electrical
revolution. The higher the value, the faster the merge. Values close to 1 % are set for the drives where a high start-up torque
and smooth transitions between the open loop and the closed loop are required.

7. Click the “Update Target” button to apply the changes to the MCU.

8. Switch to the “Control Structure” tab, and enable the “Speed FOC”.

9. Set the required speed higher than the merging speed.

10. Check the start-up response in the recorder.

11. Tune the start-up parameters until you achieve an optimal response.

12. If the rotor does not start running, increase the start-up current.

13. If the merging process fails (the rotor is stuck or stopped), decrease the start-up ramp increment, increase the merging
speed, and set the merging coefficient to 5 %.

Figure 33. Motor startup

8.8 BEMF observer tuning
1. In the “Basic” mode, the parameters of the BEMF observer and the tracking observer are fully calculated using the motor

parameters and no action is required. If the calculated loop parameters do not correspond to the optimal response, the
bandwidth and attenuation parameters can be tuned.

2. Select the “Observer” recorder from the FreeMASTER project tree.

NXP Semiconductors
Identifying parameters of user motor using MCAT

MCUXpresso SDK 3-Phase PMSM Control (DSC), Rev. 0, 12/2020
User Guide 37 / 45

3. Set the required bandwidth and attenuation of the BEMF observer—the bandwidth is typically set to a value close to the
current loop bandwidth.

4. Set the required bandwidth and attenuation of the tracking observer—the bandwidth is typically set in the range of 10 – 20
Hz for most low-dynamic drives (fans, pumps).

5. Click the “Update Target” button to apply the changes to the MCU.

6. Check the observer response in the recorder.

8.9 Speed PI controller tuning
The motor speed control loop is a first-order function with a mechanical time constant that depends on the motor inertia and
friction. If the mechanical constant is available, the PI controller constants can be tuned using the loop bandwidth and attenuation.
Otherwise, the manual tuning of the P and I portions of the speed controllers is available to obtain the required speed response
(see the example response in Figure 34). There are dozens of approaches to tune the PI controller constants. The following steps
provide an approach to set and tune the speed PI controller for a PM synchronous motor:

1. Select the “Speed Controller” option from the FreeMASTER project tree.

2. Select the “Speed & Pos” tab.

3. Check the “Manual Constant Tuning” option—that is, the “Bandwidth” and “Attenuation” fields are disabled and the
“SL_Kp” and “SL_Ki” fields are enabled.

4. Tune the proportional gain:

• Set the “SL_Ki” integral gain to 0.

• Set the speed ramp to 1000 rpm/sec (or higher).

• Switch to the “Control Structure” tab and run the motor at a convenient speed (about 30 % of the nominal speed).

• Set a step in the required speed to 40 % of Nnom.

• Switch back to the “Speed loop” tab.

• Adjust the proportional gain “SL_Kp” until the system responds to the required value properly and without any
oscillations or excessive overshoot:

— If the “SL_Kp” field is set low, the system response is slow.

— If the “SL_Kp” field is set high, the system response is tighter.

— When the “SL_Ki” field is 0, the system most probably does not achieve the required speed.

— Click the “Update Target” button to apply the changes to the MCU.

5. Tune the integral gain:

• Increase the “SL_Ki” field slowly to minimize the difference between the required and actual speeds to 0.

• Adjust the “SL_Ki” field such that you do not see any oscillation or large overshoot of the actual speed value while
the required speed step is applied.

• Click the “Update Target” button to apply the changes to the MCU.

6. Tune the loop bandwidth and attenuation until the required response is received. The example waveforms with the
correct and incorrect settings of the speed loop parameters are shown in the following figures:

• The “SL_Ki” value is low and the “Speed Actual Filtered” does not achieve the “Speed Ramp” (see Figure 34).

NXP Semiconductors
Identifying parameters of user motor using MCAT

MCUXpresso SDK 3-Phase PMSM Control (DSC), Rev. 0, 12/2020
User Guide 38 / 45

Figure 34. Speed controller response—SL_Ki value is low, Speed Ramp is not achieved

• The “SL_Kp” value is low, the “Speed Actual Filtered” greatly overshoots, and the long settling time is unwanted
(see Figure 35).

Figure 35. Speed controller response—SL_Kp value is low, Speed Actual Filtered greatly overshoots

• The speed loop response has a small overshoot and the “Speed Actual Filtered” settling time is sufficient. Such
response can be considered optimal (see Figure 36).

NXP Semiconductors
Identifying parameters of user motor using MCAT

MCUXpresso SDK 3-Phase PMSM Control (DSC), Rev. 0, 12/2020
User Guide 39 / 45

Figure 36. Speed controller response—speed loop response with a small overshoot

NXP Semiconductors
Identifying parameters of user motor using MCAT

MCUXpresso SDK 3-Phase PMSM Control (DSC), Rev. 0, 12/2020
User Guide 40 / 45

Chapter 9
Conclusion
This application note describes the implementation of the sensor and sensorless Field-Oriented Control of a 3-phase PMSM on
the NXP MC56F81000-EVK and MC56F83000-EVK with the FRDM-MC-LVPMSM NXP Freedom Development Platform. The
hardware-dependent part of the control software is described in Hardware setup. The motor-control application timing is described
in MC56F83789 hardware timing and synchronization and MC56F81868 hardware timing and synchronization. The peripheral
initialization is described in MC56F83789 peripheral settings and MC56F81686 peripheral settings. The motor user interface and
remote control using FreeMASTER are as follows. The motor parameters identification theory and the identification algorithms are
described in Identifying parameters of user motor using MCAT.

NXP Semiconductors

MCUXpresso SDK 3-Phase PMSM Control (DSC), Rev. 0, 12/2020
User Guide 41 / 45

Chapter 10
Acronyms and abbreviations
Table 10. Acronyms and abbreviations

Acronym Meaning

ADC Analog-to-Digital Converter

ACIM Asynchronous Induction Motor

ADC_ETC ADC External Trigger Control

AN Application Note

BLDC Brushless DC motor

CCM Clock Controller Module

CPU Central Processing Unit

DC Direct Current

DRM Design Reference Manual

ENC Encoder

FOC Field-Oriented Control

GPIO General-Purpose Input/Output

LPUART Low-Power Universal Asynchronous Receiver/Transmitter

MCAT Motor Control Application Tuning tool

MCDRV Motor Control Peripheral Drivers

MCU Microcontroller

PI Proportional Integral controller

PLL Phase-Locked Loop

PMSM Permanent Magnet Synchronous Machine

PWM Pulse-Width Modulation

QD Quadrature Decoder

TMR Quad Timer

USB Universal Serial Bus

XBAR Inter-Peripheral Crossbar Switch

NXP Semiconductors

MCUXpresso SDK 3-Phase PMSM Control (DSC), Rev. 0, 12/2020
User Guide 42 / 45

Chapter 11
References
These references are available on www.nxp.com:

1. Sensorless PMSM Field-Oriented Control (document DRM148).

2. Motor Control Application Tuning (MCAT) Tool for 3-Phase PMSM (document AN4642).

NXP Semiconductors

MCUXpresso SDK 3-Phase PMSM Control (DSC), Rev. 0, 12/2020
User Guide 43 / 45

http://www.nxp.com
https://www.nxp.com/doc/DRM148
https://www.nxp.com/doc/AN4642

Chapter 12
Useful links

1. PMSM Control Reference Design www.nxp.com/motorcontrol_pmsm

2. BLDC Control Reference Design www.nxp.com/motorcontrol_bldc

3. ACIM Control Reference Design www.nxp.com/motorcontrol_acim

4. FRDM-MC-PMSM Freedome Development Platform

5. Get Started with the MC56F81000-EVK

6. Get Started with the MC56F83000-EVK

7. CodeWarrior IDE

8. MCUXpresso SDK Builder (SDK examples in several IDEs) https://mcuxpresso.nxp.com/en/welcome

NXP Semiconductors

MCUXpresso SDK 3-Phase PMSM Control (DSC), Rev. 0, 12/2020
User Guide 44 / 45

http://www.nxp.com/motorcontrol_pmsm
http://www.nxp.com/motorcontrol_bldc
http://www.nxp.com/motorcontrol_acim
https://www.nxp.com/design/development-boards/freedom-development-boards/mcu-boards/nxp-freedom-development-platform-for-low-voltage-3-phase-pmsm-motor-control:FRDM-MC-LVPMSM
https://www.nxp.com/docs/en/quick-reference-guide/MC56F81000EVKQSG.pdf
https://www.nxp.com/design/software/development-software/codewarrior-development-tools:CW_HOME
https://mcuxpresso.nxp.com/en/welcome

How To Reach Us

Home Page:

nxp.com

Web Support:

nxp.com/support

Information in this document is provided solely to enable system and software implementers to use NXP products. There
are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits based on the
information in this document. NXP reserves the right to make changes without further notice to any products herein.

NXP makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor
does NXP assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any
and all liability, including without limitation consequential or incidental damages. “Typical” parameters that may be provided
in NXP data sheets and/or specifications can and do vary in different applications, and actual performance may vary over
time. All operating parameters, including “typicals,” must be validated for each customer application by customer's technical
experts. NXP does not convey any license under its patent rights nor the rights of others. NXP sells products pursuant to
standard terms and conditions of sale, which can be found at the following address: nxp.com/SalesTermsandConditions.

Right to make changes - NXP Semiconductors reserves the right to make changes to information published in this
document, including without limitation specifications and product descriptions, at any time and without notice. This
document supersedes and replaces all information supplied prior to the publication hereof.

Security — Customer understands that all NXP products may be subject to unidentified or documented vulnerabilities.
Customer is responsible for the design and operation of its applications and products throughout their lifecycles to reduce
the effect of these vulnerabilities on customer’s applications and products. Customer’s responsibility also extends to other
open and/or proprietary technologies supported by NXP products for use in customer’s applications. NXP accepts no
liability for any vulnerability. Customer should regularly check security updates from NXP and follow up appropriately.
Customer shall select products with security features that best meet rules, regulations, and standards of the intended
application and make the ultimate design decisions regarding its products and is solely responsible for compliance with all
legal, regulatory, and security related requirements concerning its products, regardless of any information or support that
may be provided by NXP. NXP has a Product Security Incident Response Team (PSIRT) (reachable at PSIRT@nxp.com)
that manages the investigation, reporting, and solution release to security vulnerabilities of NXP products.

NXP, the NXP logo, NXP SECURE CONNECTIONS FOR A SMARTER WORLD, COOLFLUX,EMBRACE, GREENCHIP,
HITAG, ICODE, JCOP, LIFE, VIBES, MIFARE, MIFARE CLASSIC, MIFARE DESFire, MIFARE PLUS, MIFARE FLEX,
MANTIS, MIFARE ULTRALIGHT, MIFARE4MOBILE, MIGLO, NTAG, ROADLINK, SMARTLX, SMARTMX, STARPLUG,
TOPFET, TRENCHMOS, UCODE, Freescale, the Freescale logo, AltiVec, CodeWarrior, ColdFire, ColdFire+, the Energy
Efficient Solutions logo, Kinetis, Layerscape, MagniV, mobileGT, PEG, PowerQUICC, Processor Expert, QorIQ, QorIQ
Qonverge, SafeAssure, the SafeAssure logo, StarCore, Symphony, VortiQa, Vybrid, Airfast, BeeKit, BeeStack, CoreNet,
Flexis, MXC, Platform in a Package, QUICC Engine, Tower, TurboLink, EdgeScale, EdgeLock, eIQ, and Immersive3D are
trademarks of NXP B.V. All other product or service names are the property of their respective owners. AMBA, Arm, Arm7,
Arm7TDMI, Arm9, Arm11, Artisan, big.LITTLE, Cordio, CoreLink, CoreSight, Cortex, DesignStart, DynamIQ, Jazelle,
Keil, Mali, Mbed, Mbed Enabled, NEON, POP, RealView, SecurCore, Socrates, Thumb, TrustZone, ULINK, ULINK2,
ULINK-ME, ULINK-PLUS, ULINKpro, μVision, Versatile are trademarks or registered trademarks of Arm Limited (or its
subsidiaries) in the US and/or elsewhere. The related technology may be protected by any or all of patents, copyrights,
designs and trade secrets. All rights reserved. Oracle and Java are registered trademarks of Oracle and/or its affiliates. The
Power Architecture and Power.org word marks and the Power and Power.org logos and related marks are trademarks and
service marks licensed by Power.org.

© NXP B.V. 2020. All rights reserved.

For more information, please visit: http://www.nxp.com
For sales office addresses, please send an email to: salesaddresses@nxp.com

Date of release: 12/2020
Document identifier: 3PPMSMCDSCUG

http://www.nxp.com
http://www.nxp.com/support
http://www.nxp.com/SalesTermsandConditions

	Contents
	1 Introduction
	2 Hardware setup
	2.1 FRDM-MC-LVPMSM
	2.2 Linix 45ZWN24-40 motor
	2.3 MC56F81000-EVK
	2.4 MC56F83000-EVK

	3 MC56F8xxxx series features and peripheral settings
	3.1 MC56F81xxx
	3.1.1 MC56F81868 hardware timing and synchronization
	3.1.2 MC56F81686 peripheral settings

	3.2 MC56F83xxx
	3.2.1 MC56F83789 hardware timing and synchronization
	3.2.2 MC56F83789 peripheral settings

	3.3 CPU load and memory usage

	4 Project file and IDE workspace structure
	4.1 PMSM project structure

	5 Motor-control peripheral initialization
	6 User interface
	7 Remote control using FreeMASTER
	7.1 Establishing FreeMASTER communication
	7.2 MCAT FreeMASTER interface (Motor Control Application Tuning)

	8 Identifying parameters of user motor using MCAT
	8.1 PMSM electrical and parameters measurement process
	8.2 Initial configuration setting and update
	8.3 Control structure modes
	8.4 Alignment tuning
	8.5 Current loop tuning
	8.6 Speed ramp tuning
	8.7 Open loop startup
	8.8 BEMF observer tuning
	8.9 Speed PI controller tuning

	9 Conclusion
	10 Acronyms and abbreviations
	11 References
	12 Useful links

