PMSMMCXN10

MCUXpresso SDK Field-Oriented Control (FOC) of 3-Phase PMSM and BLDC

motors
Rev. 0 — 9 January 2023

User guide

1 Introduction

This user's guide describes the implementation of the sensorless motor-control software for 3-phase Permanent
Magnet Synchronous Motors (PMSM), including the motor parameters identification algorithm, on the NXP
MCX N Series Advanced Microcontollers. The sensorless control software and the PMSM control theory in
general are described in design reference manual DRM148 Sensorless PMSM Field-Oriented Control (FOC).
The NXP Freedom (FRDM-MC-LVPMSM) is used as the hardware platform for the PMSM control reference
solution. The hardware-dependent part of the sensorless and sensored control software, including a detailed
peripheral setup and the Motor Control (MC) peripheral drivers, are addressed as well. The motor parameters
identification theory and algorithms are presented in this document. The last part of the document introduces
and explains the user interface represented by the Motor Control Application Tuning (MCAT) page based on
the FreeMASTER run-time debugging tool. These tools provide a simple and user-friendly way for the motor
parameter identification, algorithm tuning, software control, debugging, and diagnostics.

This document describes how to run and control the Permanent Magnet Synchronous Motor (PMSM) project
using MCX N Series Advanced Microcontollers with the Freedom development board. The software provides
sensorless/sensored field-oriented vector position, speed, torque, and scalar control. You can control the
application using the board buttons or via FreeMASTER. The motor identification and application tuning is done
using the MCAT tool integrated in the FreeMASTER page. The required software, hardware setup, jumper
settings, project arrangement, and user interface are described in the following sections.

Available motor control examples, supported motors and possible control methods are listed in Table 1. More
detailed description of the examples will be discussed in Section 3.2 chapter.

Table 1. Available examples and control methods

Possible control methods in SDK example
Examble Supborted motor Scalar & Current FOC | Sensorless Sensored Sensored
P PP Voltage (Torque) | Speed FOC = Speed FOC | Position FOC

Linix 45ZWN24-

40 (default motor) v v v N/A N/A
pmsm._ene Teknic M-2310P

eknic M-
(with ENC) v v v v v

Note: The latest documentation for the motor control SDK is available on http://www.nxp.com/

motorcontrol_pmsm.

h o

2

https://www.nxp.com/products/processors-and-microcontrollers/arm-microcontrollers/general-purpose-mcus/mcx-arm-cortex-m/mcx-n-series:MCX-N-SERIES
https://www.nxp.com/webapp/Download?colCode=DRM148
https://www.nxp.com/design/development-boards/freedom-development-boards/mcu-boards/nxp-freedom-development-platform-for-low-voltage-3-phase-pmsm-motor-control:FRDM-MC-LVPMSM
https://www.nxp.com/docs/en/application-note/AN4642.pdf
https://www.nxp.com/products/processors-and-microcontrollers/arm-microcontrollers/general-purpose-mcus/mcx-arm-cortex-m/mcx-n-series:MCX-N-SERIES
http://www.nxp.com/motorcontrol_pmsm
http://www.nxp.com/motorcontrol_pmsm

NXP Semiconductors PMSMMCXN10

MCUXpresso SDK Field-Oriented Control (FOC) of 3-Phase PMSM and BLDC motors

2 Hardware setup

The PMSM Field-Oriented Control (FOC) application runs on the FRDM-MC-LVPMSM development platform
with the MCX N9XX-EVK development tools, in combination with the Teknic M-2310P or Linix 45ZWN24-40
permanent magnet synchronous motors.

2.1 FRDM-MC-LVPMSM

This evaluation board, in a shield form factor, effectively turns an NXP Freedom development board or an
evaluation board into a complete motor-control reference design, compatible with existing NXP Freedom

development boards and evaluation boards. The Freedom motor-control headers are compatible with the
Arduino™ R3 pin layout.

The FRDM-MC-LVPMSM low-voltage, 3-phase Permanent Magnet Synchronous Motor (PMSM) Freedom
development platform board has the power supply input voltage of 24-48 VDC with a reverse polarity protection
circuitry. The auxiliary power supply of 5.5 VDC is created to supply the FRDM MCU boards. The output current
is up to 5 A RMS. The inverter itself is realized by a 3-phase bridge inverter (six MOSFETs) and a 3-phase
MOSFET gate driver. The analog quantities (such as the 3-phase motor currents, DC-bus voltage, and DC-bus
current) are sensed on this board. There is also an interface for speed and position sensors (encoder, hall). The
block diagram of this complete NXP motor-control development kit is shown in Figure 1.

Controler card B FRDM-MC-LVPMSM Parts

24B4§V Controller Card Parts
Polarity Power Power Supply

Protection Supply l l
Open ¢ USB
SDA

6x MOSFET |) JTAG
MOSFET predriver <
Target

Analog MCU <« Buttons

sensing Ude, dc

i LEDs

Encoder «— Accel

Encoder /
Hall

Enc, Hall

«— Therm

Figure 1. Motor-control development platform block diagram

PMSMMCXN10 All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 0 — 9 January 2023

2/60

NXP Semiconductors PMSMMCXN10

MCUXpresso SDK Field-Oriented Control (FOC) of 3-Phase PMSM and BLDC motors

Figure 2. FRDM-MC-LVPMSM

The FRDM-MC-LVPMSM board does not require a complicated setup. For more information about the Freedom
development platform, see www.nxp.com.

Note:

There might be a wrong FRDM-MC-LVPMSM series on the market (series VV19520XXX). This series

is populated with 10mOhm shunt resistors and noisy operational amplifiers which affects phase current
measurement. The mc_pmsm example is tuned for original FRDM-MC-LVPMSM board with 20mOhm shunt
resistors.

2.2 Linix 45ZWN24-40 motor

The Linix 45ZWN24-40 motor is a low-voltage 3-phase permanent-magnet motor with hall sensor used in
PMSM applications. The motor parameters are listed in Table 2.

Table 2. Linix 45ZWN24-40 motor parameters

Characteristic Symbol Value Units

Rated voltage Vit 24 \%

Rated speed - 4000 RPM

Rated torque T 0.0924 Nm

Rated power P 40 w

Continuous current Ics 2.34 A

Number of pole-pairs pp 2 -

PMSMMCXN10 Al information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.
User guide Rev. 0 — 9 January 2023

3/60

http://www.freescale.com

NXP Semiconductors

PMSMMCXN10

MCUXpresso SDK Field-Oriented Control (FOC) of 3-Phase PMSM and BLDC motors

Figure 3. Linix 45ZWN24-40 permanent magnet synchronous motor

The motor has two types of connectors (cables). The first cable has three wires and is designated to power the
motor. The second cable has five wires and is designated for the hall sensors’ signal sensing. For the PMSM
sensorless application, only the power input wires are needed.

2.3 Teknic M-2310P motor

The Teknic M-2310P-LN-04K motor is a low-voltage 3-phase permanent-magnet motor used in PMSM
applications. The motor has two feedback sensors (hall and encoder). For information on the wiring of feedback
sensors, see the datasheet on the manufacturer web page. The motor parameters are listed in Table 3.

Table 3. Teknic M-2310P motor parameters

Characteristic Symbol Value Units
Rated voltage Vit 40 \%
Rated speed - 6000 RPM
Rated torque 0.247 Nm
Rated power 170 w
Continuous current Ics 71 A
Number of pole-pairs pp 4 -

PMSMMCXN10

All information provided in this document is subject to legal disclaimers.

© 2023 NXP B.V. All rights reserved.

User guide

Rev. 0 — 9 January 2023

4/60

PMSMMCXN10

MCUXpresso SDK Field-Oriented Control (FOC) of 3-Phase PMSM and BLDC motors

NXP Semiconductors

Figure 4. Teknic M-2310P permanent magnet synchronous motor

For the sensorless control mode, you need only the power input wires. If used with the hall or encoder sensors,
connect also the sensor wires to the NXP Freedom power stage.

[2] 3][a][5][e]7
BRNEERDREE

4”%'\—‘

ire Enfry View
(W

Motor phases

Pin | Color Signal Pin | Color Signal

1 DRAINx3 | P DRAIN 9 16AWG BLK | PHASER
2 | N/A N/A 10 | 16AWG RED | PHASES
3 | GRN COMMS-T | 11 | 16AWG WHT | PHASE T
4 | GRN/WHT | COMM R-S +oV D
5 | GRY/WHT | COMMT-R | 13 | BRN ENCI
6 | DRAIN x1 E DRAIN 14 | ORN ENCB

| 7 | BLK GND 15 | BLU ENC A
8¢ | BLU/WHT | ENC A~ 16* | ORN/WHT ENC B~

Encoder wires

Figure 5. Teknic motor connector type 1

PMSMMCXN10

All information provided in this document is subject to legal disclaimers.

User guide

Rev. 0 — 9 January 2023

© 2023 NXP B.V. All rights reserved.

NXP Semiconductors

PMSMMCXN10

MCUXpresso SDK Field-Oriented Control (FOC) of 3-Phase PMSM and BLDC motors

(Mating Face Shown)

Encoder wires

Motor phases
Pin Signal Pin Color Signal
R | DRAIN =3 P DRAIN = GRY/WHT | COMM T-R
C 16AWG RED | PHASE S U BRIN ENCI |
D 16AWG WHT | PHASE T G | GRN COMM S-T
B 16AWG BLK | PHASE R T RED +5VDC IN
] | BLU ENC A TORN/WHT | ENCB~
K* | BLU/WHT ENC A~ Vv ORN ENCB |
H GRN/WHT COMMR-S | M | DRAIN x1 E DRAIN
IS TBLK GND |
Figure 6. Teknic motor connector type 2
2.4 MCX N9XX-EVK
The proper jumper settings are required for the correct operation of the EVK board.
Table 4. MCX N9XX-EVK jumper settings
Jumper Setting Jumper Setting Jumper Setting
JP4 1-2 JP25 1-2 JP37 1-2
JP8 1-2 JP26 1-2 JP38 1-2
JP11 1-2 J26 1-2 JP39 1-2
JP12 1-2 JP27 1-2 JP40 1-2
JP13 1-2 JP29 1-2 JP42 1-2
JP14 1-2 JP30 1-2 JP43 1-2
JP16 1-2 JP31 1-2 JP44 1-2
JP17 1-2 JP32 1-2 JP45 1-2
JP18 2-3 JP33 1-2 JP46 1-2
JP20 1-2 JP34 1-2 JP48 1-2
JP21 1-2 JP36 1-2

All others jumpers are open.

PMSMMCXN10

All information provided in this document is subject to legal disclaimers.

© 2023 NXP B.V. All rights reserved.

User guide

Rev. 0 — 9 January 2023

6/60

NXP Semiconductors

PMSMMCXN10

MCUXpresso SDK Field-Oriented Control (FOC) of 3-Phase PMSM and BLDC motors

s

°
e (Ll

==l P12
Jradis:
w3y

Figure 7. MCX N9XX-EVK board with highlighted jumper settings

2.4.1 Hardware assembling

1. Connect the FRDM-MC-LVPMSM shield on top of the MCX N9XX-EVK board (there is only one possible

option).

2. Connect the 3-phase motor wires to the screw terminals (J7) on the Freedom PMSM power stage.
3. Optionally connect the motor encoder connector to the encoder connector (J6) on the Freedom PMSM

power stage.

4. Plug the USB cable from the USB host to the Debug USB connector (J5) on the EVK board.
5. Plug the 24-V DC power supply to the DC power connector on the Freedom PMSM power stage.

PMSMMCXN10

All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide

Rev. 0 — 9 January 2023
7/60

NXP Semiconductors PMSMMCXN10

MCUXpresso SDK Field-Oriented Control (FOC) of 3-Phase PMSM and BLDC motors

Figure 8. Assembled Freedome system

Note: The example has been tested on the board with schematic number: SCH-55276 REV A.

PMSMMCXN10 All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 0 — 9 January 2023

8/60

NXP Semiconductors PMSMMCXN10

MCUXpresso SDK Field-Oriented Control (FOC) of 3-Phase PMSM and BLDC motors

3 MCX N microcontrollers features and peripheral settings

The MCX N Series features high-performance, low-power microcontrollers with smart peripherals and
accelerators, providing the ultimate balance of performance and power consumption. This advanced series
introduces the first instantiation of NXP's proprietary neural processing unit (NPU) with high levels of integration
and precision analog. The low-power cache enhances system performance, while the dual-bank flash and full
ECC RAM support system safety and offer an extra layer of protection and assurance.

The peripheral settings and application timings are described in the following sections.

3.1 MCX N94x

The MCX N94x is based on dual high-performance Arm® Cortex®-M33 cores running up to 150 MHz, with 2MB
of Flash with optional full ECC RAM, a DSP co-processor and an integrated proprietary Neural Processing Unit
(NPU). The integrated NPU delivers up to 30x faster machine learning (ML) throughput compared to a CPU
core alone enabling it to spend less time awake and reducing overall power consumption.

For more information see MCX N94x and N54x MCUs on nxp web site.

3.1.1 Hardware timing and synchronization

Correct and precise timing is crucial for motor-control applications. Therefore, the motor-control-dedicated
peripherals take care of the timing and synchronization on the hardware layer. In addition, you can set the PWM
frequency as a multiple of the ADC interrupt (ADC ISR) frequency where the FOC algorithm is calculated. In this
case, the PWM frequency is equal to the FOC frequency.

master master
reload reload

SMo t/]‘/l,/l./l,/l_/l/

-

:TRIGO{vaM) : : ! !
Ol Y i il i
PWM bottom I : I I I
conversion | |

Figure 9. Hardware timing and synchronization

* The top signal shows the eFlexPWM counter (SMO counter). The dead time is emphasized at the PWM top
and PWM bottom signals. The SM0O submodule generates the master reload at every opportunity.

* The SMO generates trigger O (when the counter counts to a value equal to the TRIG4 value) for the ADC with
a delay of approximately T4eatime/2- This delay ensures correct current sampling at the duty cycles close to
100 %.

PMSMMCXN10 All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 0 — 9 January 2023

9/60

https://www.nxp.com/products/processors-and-microcontrollers/arm-microcontrollers/general-purpose-mcus/mcx-arm-cortex-m/mcx-n-series:MCX-N-SERIES
https://www.nxp.com/products/processors-and-microcontrollers/arm-microcontrollers/general-purpose-mcus/mcx-arm-cortex-m/mcx-n-series/mcx-n94x-and-n54x-mcus-with-dual-core-arm-cortex-m33-edgelock-secure-subsystem-and-neural-processing-unit:MCX-N94X-N54X

NXP Semiconductors PMSMMCXN10

MCUXpresso SDK Field-Oriented Control (FOC) of 3-Phase PMSM and BLDC motors

» ADC starts conversion. When the ADC conversion is completed, the ADC ISR (ADC interrupt) is entered. The
FOC calculation is done in this interrupt.

3.1.2 Motor control peripheral settings

This section describes the peripherals used for the motor control. On MCX N94x, there are three submodules
from the enhanced FlexPWM (eFlexPWM) used for 6-channel PWM generation and two 12-bit ADCs for the
phase currents and DC-bus voltage measurement. The eFlexPWM and ADC are synchronized via submodule 0
from the eFlexPWM. The following settings are located in the mc_periph_init.c and peripherals.c files and their
header files.

3.1.2.1 PWM generation - PWM1

* Six channels from three submodules are used for the 3-phase PWM generation. Submodule 0
generates the master reload at event every n" opportunity, depending on the user-defined macro
M1_FOC_FREQ_VS_PWM_FREQ.

* Submodules 1 and 2 get their clocks from submodule 0.

* The counters at submodules 1 and 2 are synchronized with the master reload signal from submodule 0.

» Submodule 0 is used for synchronization with ADC. The submodule generates the output trigger after the
PWM reload, when the counter counts to VAL4.

* Fault mode is enabled for channels A and B at submodules 0, 1, and 2 with automatic fault clearing (the PWM
outputs are re-enabled at the first PWM reload after the fault input returns to zero).

* The PWM period (frequency) is determined by how long it takes the counter to count from INIT to VAL1.
By default, INIT = -MODULO/2 and VAL1 = MODULO/2 -1. MODULO is equal to core clock divided by
M1_PWM_FREQ. (10kHz)

» Dead-time insertion is enabled. Define the dead-time length in the M1_PWM_DEADTIME macro.

3.1.2.2 Analog sensing - ADC1

ADCH1 is used for the MC analog sensing of currents and DC-bus voltage.

* The ADCs operate as 12-bit with the single-ended conversion and hardware trigger selected. The ADCs are
triggered by the trigger generated by the eFlexPWM.

» After ADC conversion is completed, ADC interrupt is enabled and serves the FOC fast-loop algorithm.

3.1.2.3 Quadrature Decoder (QD) module

The QD module is used to sense the position and speed from the encoder sensor.

* The direction of counting is set in the M1_POSPE_ENC_DIRECTION macro.

* The modulo counting and the modulus counting roll-over/under to increment/decrement revolution counter are
enabled.

3.1.2.4 Slow-loop interrupt generation - CTIMER

The standart timer module CTIMER is used to generate the slow-loop interrupt.

* The slow loop is usually ten times slower than the fast loop. The slow loop frequency is set in the
M1_SLOW_LOOP_FREQ macro and equals 1000 Hz.

* An interrupt (which serves the slow-loop period) is enabled and generated at the reload event.

PMSMMCXN10 All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 0 — 9 January 2023

10/60

NXP Semiconductors PMSMMCXN10

MCUXpresso SDK Field-Oriented Control (FOC) of 3-Phase PMSM and BLDC motors

3.2 Available motor control examples

Following examples are available for the device specified in this document:
* pmsm_enc

Supported motors and possible control methods for each example are mentioned in the Introduction of this
document.

3.2.1 pmsm_enc example

This example can be used for the sensor and sensorless motor control application both. Default motor
configuration is tuned for the Linix 45ZWN24-40 motor. Motor identification is implemented in this example.
Changing motor configuration is described below.

3.2.2 Change motor configuration

Motor control examples contains two or more configuration files: m1_pmsm_appconfig.h,
m2_pmsm_appconfig.h etc. Each of them contains constants tuned for the selected motor (Linix 45ZWN24-40
or Teknic M-2310P in case of the Freedom development platform, Mige 60CST-MO1330 in case of the High-
voltage platform). There are two ways, how to change motor configuration corresponding to the connected
motor. The first way is following:

* In the project example folder, find configuration file which will be used for.
* Rename this configuration file to m7_pmsm_appconfig.h.
* Rebuild project and load the code to the MCU.

The second way how to change motor configuration is described in Section 8.3.

3.3 CPU load and memory usage

The following information apply to the application built using one of the following IDE: MCUXpresso IDE, IAR or
Keil MDK. The memory usage is calculated from the .map linker file, including the 1-KB FreeMASTER recorder
buffer allocated in RAM. In the MCUXpresso IDE, the memory usage can be also seen after project build in the
Console window. The table below shows the maximum CPU load of the supported examples. The CPU load

is measured using the SysTick timer. The CPU load is dependent on the fast-loop (FOC calculation) and slow-
loop (speed loop) frequencies. In this case, it applies to the fast-loop frequency of 10 KHz and the slow-loop
frequency of 1 kHz. The total CPU load is calculated using the following equations:

CPUpqase = cyclesgay, ;f"n 100 [%)
[=i)
CPU,,,,, = cycles . % 100 [%]

CPUy ot = EPUJI"RSF + CPUg o [%]

Where:

CPUgyst - the CPU load taken by the fast loop.

cyclesst - the number of cycles consumed by the fast loop.
fiast - the frequency of the fast-loop calculation (10 KHz).

fcpy - CPU frequency.

PMSMMCXN10 All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 0 — 9 January 2023

11/60

NXP Semiconductors PMSMMCXN10

MCUXpresso SDK Field-Oriented Control (FOC) of 3-Phase PMSM and BLDC motors

CPUg)ow - the CPU load taken by the slow loop.
cyclesgow - the number of cycles consumed by the slow loop.
fsiow - the frequency of the slow-loop calculation (1 KHz).

CPUjgtq - the total CPU load consumed by the motor control.

Table 5. Maximum CPU load (fast loop)

debug configuration

Device Example Speed Control Position Control

MCX N9XX-EVK pmsm_enc 28.5% 30.5%

Measured CPU load apply to the application built using IAR. IDE.

CPU load measured without defined RAM_RELOCATION macro. Measured CPU load apply to the application
built using IAR IDE.

Note: Memory usage and maximum CPU load can differ depending on the used IDEs and settings.

PMSMMCXN10 All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 0 — 9 January 2023

12/60

NXP Semiconductors PMSMMCXN10

MCUXpresso SDK Field-Oriented Control (FOC) of 3-Phase PMSM and BLDC motors

4 Project file and IDE workspace structure

All the necessary files are included in one package, which simplifies the distribution and decreases the size

of the final package. The directory structure of this package is simple, easy to use, and organized in a logical
manner. The folder structure used in the IDE is different from the structure of the PMSM package installation,
but it uses the same files. The different organization is chosen due to a better manipulation with folders and files
in workplaces and due to the possibility to add or remove files and directories. The “pack_motor_board” project
includes all the available functions and routines, MID functions, scalar and vector control of the motor, FOC
control, and FreeMASTER MCAT project. This project serves for development and testing purposes.

4.1 PMSM project structure

The directory tree of the PMSM project is shown in below.

[pack_motor_moxnhocevk]
A [boards]
A [mcxnSexevk]
A [dernc_apps]
A [mec_pmsm]
b [prnsm_enc]
hd [cm33_corel]
[armgee]
[iar]
[mdk]
[CM5I5]
[components]
[devices]
[does]
b [Fiddleware]
A [motor_control]
[acim]
[freemnaster]
A [prmsm]

W [prnsm_float)
[mec_algaorithms]
[me_cfg_template]
[Fnc_drivers]
[mec_identification]
[mec_state_rmachineg]
[state_maching]

[rtcesl]

[tools]

Figure 10. Directory tree

The main project folder pack_motor_mcxn9xxevk\boards\mcxn9xxevk\demo_apps\mc_pmsm\pmsm_enc\
contains these folders and files:

¢ jar—for the IAR Embedded Workbench IDE.
» armgcc—for the GNU Arm IDE.
* mdk—rfor the uVision Keil IDE.

PMSMMCXN10 All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 0 — 9 January 2023

13/60

NXP Semiconductors PMSMMCXN10

MCUXpresso SDK Field-Oriented Control (FOC) of 3-Phase PMSM and BLDC motors

* m1_pmsm_appconfig.h—contains the definitions of constants for the application control processes,
parameters of the motor and regulators, and the constants for other vector-control-related algorithms. When
you tailor the application for a different motor using the Motor Control Application Tuning (MCAT) tool, the tool
generates this file at the end of the tuning process.

* main.c—contains the basic application initialization (enabling interrupts), subroutines for accessing the MCU
peripherals, and interrupt service routines. The FreeMASTER communication is performed in the background
infinite loop.

* board.c—contains the functions for the UART, GPIO, and SysTick initialization.

* board.h—contains the definitions of the board LEDs, buttons, UART instance used for FreeMASTER, and so
on.

* clock_config.c and .h—contains the CPU clock setup functions. These files are going to be generated by the
clock tool in the future.

* mc_periph_init.c—contains the motor-control driver peripherals initialization functions that are specific for the
board and MCU used.

* mc_periph_init.h—header file for mc_periph_init.c. This file contains the macros for changing the PWM period
and the ADC channels assigned to the phase currents and board voltage.

* freemaster_cfg.h—the FreeMASTER configuration file containing the FreeMASTER communication and
features setup.

* pin_mux and .h—port configuration files. It is recommended to generate these files in the pin tool.

* peripherals.c and .h—MCUXpresso Config Tool configuration files.

The main motor-control folder pack_motor_mcxn9xxevk\middleware\motor_control\ contains these subfolders:

e pmsm—contains main PMSM motor-control functions.
* freemaster—contains the FreeMASTER project file pmsm_float_enc.pmp. Open this file in the FreeMASTER
tool and use it to control the application. The folder also contains the auxiliary files for the MCAT tool.

The pack_motor_mcxn9xxevk\middleware\motor_contro\pomsm\pmsm_float\ folder contains these subfolders
common to the other motor-control projects:

* mc_algorithms—contains the main control algorithms used to control the FOC and speed control loop.

* mc_cfg_template—contains templates for MCUXpresso Config Tool components.

e mc_drivers—contains the source and header files used to initialize and run motor-control applications.

* mc_identification—contains the source code for the automated parameter-identification routines of the motor.

* mc_state_machine—contains the software routines that are executed when the application is in a particular
state or state transition.

 state_machine—contains the state machine functions for the FAULT, INITIALIZATION, STOP, and RUN
states.

PMSMMCXN10 All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 0 — 9 January 2023

14/60

NXP Semiconductors PMSMMCXN10

MCUXpresso SDK Field-Oriented Control (FOC) of 3-Phase PMSM and BLDC motors

5 Tools

Install the FreeMASTER Run-Time Debugging Tool 3.1.4 and one of the following IDEs on your PC to run and
control the PMSM application properly:

* |AR Embedded Workbench IDE v9.32.1 or higher
* MCUXpresso v11.7.0
* ARM-MDK - Keil yVision version 5.37

For pin_mux.c, clock _config.c or peripherals.c modifications is recommended use MCUXpresso Configuration
Tool v13 or higher.

Note: For information on how to build and run the application in your IDE, see the Getting Started
with MCUXpresso SDK document located in the pack_motor_<booard>/docs folder or find the related
documentation at MCUXpresso SDK builder.

5.1 Compiler warnings

Warnings are diagnostic messages that report constructions that are not inherently erroneous and warn

about potential runtime, logic, and performance errors. In some cases, warnings can be suspended and
these warnings do not show during the compiling process. One of such special cases is the “unused function”
warning, where the function is implemented in the source code with its body, but this function is not used. This
case occurs when you implement the function as a supporting function for better usability, but you do not use
the function for any special purposes for a while.

The IAR Embedded Workbench IDE suppresses these warnings:

* Pa082 - undefined behavior; the order of volatile accesses is not defined in this statement.
* Pa050 - non-native end of line sequence detected.

The Arm-MDK Keil yVision IDE suppresses these warnings:
* 6314 - No section matches pattern xxx.o (yy).

By default, there are no other warnings shown during the compiling process.

PMSMMCXN10 All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 0 — 9 January 2023

15/60

https://www.nxp.com/freemaster
https://www.iar.com/iar-embedded-workbench/
https://www.nxp.com/mcuxpresso
http://www2.keil.com/mdk5/
https://www.nxp.com/design/software/development-software/mcuxpresso-software-and-tools-/mcuxpresso-config-tools-pins-clocks-peripherals:MCUXpresso-Config-Tools
https://www.nxp.com/design/software/development-software/mcuxpresso-software-and-tools-/mcuxpresso-config-tools-pins-clocks-peripherals:MCUXpresso-Config-Tools
https://mcuxpresso.nxp.com/en/welcome

NXP Semiconductors PMSMMCXN10

MCUXpresso SDK Field-Oriented Control (FOC) of 3-Phase PMSM and BLDC motors

6 Motor-control peripheral initialization

The motor-control peripherals are initialized by calling the MCDRV _Init_M1() function during MCU startup

and before the peripherals are used. All initialization functions are in the mc_periph_init.c source file and the
mc_periph_init.h header file. The definitions specified by the user are also in these files. The features provided
by the functions are the 3-phase PWM generation and 3-phase current measurement, as well as the DC-bus
voltage and auxiliary quantity measurement. The principles of both the 3-phase current measurement and the
PWM generation using the Space Vector Modulation (SVM) technique are described in Sensorless PMSM
Field-Oriented Control (document DRM148).

The mc_periph_init.h header file provides several macros, which can be defined by the user:

* M1_MCDRV_ADC_PERIPH_INIT—this macro calls ADC peripheral initialization.

* M1_MCDRV_PWM_PERIPH_INIT—this macro calls PWM peripheral initialization.

* M1_MCDRV_QD_ENC—this macro calls QD peripheral initialization.

* M1_PWM_FREQ—the value of this definition sets the PWM frequency.

* M1_FOC_FREQ_ VS PWM_FREQ—enables you to call the fast-loop interrupt at every first, second, third,
or N PWM reload. This is convenient when the PWM frequency must be higher than the maximal fast-loop
interrupt.

* M1_SPEED LOOP_FREQ —the value of this definition sets the speed loop frequency (TMR1 interrupt).

* M1_PWM_DEADTIME—the value of the PWM dead time in nanoseconds.

* M1_PWM_PAIR_PHIJA..C]—these macros enable a simple assignment of the physical motor phases to the
PWM periphery channels (or submodules). You can change the order of the motor phases this way.

* M1_ADC[1,2] PH_[A..C]—these macros are used to assign the ADC channels for the phase current
measurement. The general rule is that at least one phase current must be measurable on both ADC
converters and the two remaining phase currents must be measurable on different ADC converters. The
reason for this is that the selection of the phase current pair to measure depends on the current SVM
sector. If this rule is broken, a preprocessor error is issued. For more information about the 3-phase current
measurement, see Sensorless PMSM Field-Oriented Control (document DRM148).

* M1_ADC[1,2] UDCB—this define is used to select the ADC channel for the measurement of the DC-bus
voltage.

In the motor-control software, these API-serving ADC and PWM peripherals are available:

* The available APIs for the ADC are:

— mcdrv_adc t—MCDRYV ADC structure data type.

— void M1_MCDRV_ADC_PERIPH_INIT()—this function is by default called during the ADC peripheral
initialization procedure invoked by the MCDRV _Init_M1() function and should not be called again after the
peripheral initialization is done.

— void M1_MCDRV_CURR_3PH_CHAN_ASSIGN(mcdrv_adc_t*)—calling this function assigns proper ADC
channels for the next 3-phase current measurement based on the SVM sector.

— void M1_MCDRV_CURR_3PH_CALIB_INIT(mcdrv_adc_t*)—this function initializes the phase-current
channel-offset measurement.

— void M1_MCDRV_CURR_3PH_CALIB(mcdrv_adc_t*)—this function reads the current information from the
unpowered phases of a stand-still motor and filters them using moving average filters. The goal is to obtain
the value of the measurement offset. The length of the window for moving the average filters is set to eight
samples by default.

— void M1_MCDRV_CURR_3PH_CALIB_SET(mcdrv_adc_t*)—this function asserts the phase-current
measurement offset values to the internal registers. Call this function after a sufficient number of
M1_MCDRV_CURR_3PH_CALIB() calls.

PMSMMCXN10 All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 0 — 9 January 2023

16 /60

https://www.nxp.com/doc/DRM148
https://www.nxp.com/doc/DRM148

NXP Semiconductors PMSMMCXN10

MCUXpresso SDK Field-Oriented Control (FOC) of 3-Phase PMSM and BLDC motors

— void M1_MCDRV_ADC_GET(mcdrv_adc_t*)—this function reads and calculates the actual values of the 3-
phase currents, DC-bus voltage, and auxiliary quantity.
* The available APIs for the PWM are:
— mcdrv_pwma_pwm3ph_t—MCDRYV PWM structure data type.

— void M1_MCDRV_PWM_PERIPH_INIT—this function is by default called during the PWM periphery
initialization procedure invoked by the MCDRV _Init_M1() function.

— void M1_MCDRV_PWM3PH_SET(mcdrv_pwma_pwm3ph_t*)—this function updates the PWM phase duty
cycles.

— void M1_MCDRV_PWMS3PH_EN(mcdrv_pwma_pwm3ph_t*)—this function enables all PWM channels.

— void M1_MCDRV_PWM3PH_DIS(mcdrv_pwma_pwm3ph_t*)—this function disables all PWM channels.

— bool t M1_MCDRV_PWM3PH_FLT _GET(mcdrv_pwma_pwm3ph_t*)—this function returns the state of the
over-current fault flags and automatically clears the flags (if set). This function returns true when an over-
current event occurs. Otherwise, it returns false.

* The available APIs for the quadrature encoder are:

— mcdrv_qd_enc_t—MCDRYV QD structure data type.

— void M1_MCDRV_QD_PERIPH_INIT()—this function is by default called during the QD periphery
initialization procedure invoked by the MCDRV _Init_M1() function.

— void M1_MCDRV_QD_GET(mcdrv_qd_enc_t*)—this function returns the actual position and speed.

— void M1_MCDRV_QD_SET_DIRECTION(mcdrv_qd_enc_t*)—this function sets the direction of the
quadrature encoder.

— void M1_MCDRV_QD_CLEAR(mcdrv_qd_enc_t*)—this function clears the internal variables and decoder
counter.

PMSMMCXN10 All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 0 — 9 January 2023

17/60

NXP Semiconductors PMSMMCXN10

MCUXpresso SDK Field-Oriented Control (FOC) of 3-Phase PMSM and BLDC motors

7 User interface

The application contains the demo mode to demonstrate motor rotation. You can operate it either using the
user button, or using FreeMASTER. The NXP EVK boards include a user button associated with a port interrupt
(generated whenever one of the buttons is pressed). At the beginning of the ISR, a simple logic executes and
the interrupt flag clears. When you press the button, the demo mode starts. When you press the same button
again, the application stops and transitions back to the STOP state.

The other way to interact with the demo mode is to use the FreeMASTER tool. The FreeMASTER application
consists of two parts: the PC application used for variable visualization and the set of software drivers running
in the embedded application. Data is transferred between the PC and the embedded application via the serial
interface. This interface is provided by the CMSIS-DAP debugger included in the boards.

The application can be controlled using these two interfaces:

* The button on the MCX N9XX-EVK development board (controlling the demo mode):
— MCX N9XX-EVK - button SW3

* Remote control using FreeMASTER (chapter Section 8):
— Using the Motor Control Application Tuning (MCAT) interface.
— Setting a variable in the FreeMASTER Variable Watch.

If you are using your own motor (different from the default motors), make sure to identify all motor parameters.
The automated parameter identification is described in the following sections.

PMSMMCXN10 All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 0 — 9 January 2023

18/60

NXP Semiconductors PMSMMCXN10

MCUXpresso SDK Field-Oriented Control (FOC) of 3-Phase PMSM and BLDC motors

8 Remote control using FreeMASTER

This section provides information about the tools and recommended procedures to control the sensor/
sensorless PMSM Field-Oriented Control (FOC) application using FreeMASTER. The application contains

the embedded-side driver of the FreeMASTER real-time debug monitor and data visualization tool for
communication with the PC. It supports non-intrusive monitoring, as well as the modification of target variables
in real time, which is very useful for the algorithm tuning. Besides the target-side driver, the FreeMASTER tool
requires the installation of the PC application as well. You can download FreeMASTER 3.0 at www.nxp.com/
freemaster. To run the FreeMASTER application including the MCAT tool, double-click the pmsm_float_enc.pmp
file located in the pack _motor_imxrt1xxx\middleware\motor_control\freemaster folder. The FreeMASTER
application starts and the environment is created automatically, as defined in the *.pmp file.

Note: In MCUXpresso can be FreeMASTER application run directly from IDE in motor_control/freemaster
folder

8.1 Establishing FreeMASTER communication

The remote operation is provided by FreeMASTER via the USB interface. Perform the following steps to control
a PMSM motor using FreeMASTER:

1. Download the project from your chosen IDE to the MCU and run it.

2. Open the FreeMASTER file pmsm_x.pmpx. The PMSM project uses the TSA by default, so it is not
necessary to select a symbol file for FreeMASTER.

3. Click the communication button (the green “GO” button in the top left-hand corner) to establish the

communication.
&

@D start communication (Ctrl+G)

m Open port and and start
ot communication

oA

Figure 11. Green “GO” button placed in top left-hand corner

4. If the communication is established successfully, the FreeMASTER communication status in the
bottom right-hand corner changes from “Not connected” to “RS232 UART Communication; COMxx;
speed=115200". Otherwise, the FreeMASTER warning popup window appears.

R5232 UART Communication; COMS: speed=11520(

Figure 12. FreeMASTER—communication is established successfully
Press F5 to reload the MCAT HTML page and check the App ID.
Control the PMSM motor by writing to a control variables in a variable watch.
If you rebuild and download the new code to the target, turn the FreeMASTER application off and on.

If the communication is not established successfully, perform the following steps:

= Now

. Go to the “Project -> Options -> Comm” tab and make sure that the correct COM port is selected and the
communication speed is set to 115200 bps.

PMSMMCXN10 All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 0 — 9 January 2023

19/60

http://www.nxp.com/freemaster
http://www.nxp.com/freemaster

NXP Semiconductors PMSMMCXN10

MCUXpresso SDK Field-Oriented Control (FOC) of 3-Phase PMSM and BLDC motors

Opticns X

Comm l MAP Files] Pack Dir] HTML Pages] Demo Mode | Views & Bars

Communication

¢ Port: |COM_ALL | |AICOM ports will be scanned

Speed: |'I'IE-2DD ﬂ Timeouts and Retries...

" Plugdn module: |

|d|'w=2:pt;.-|:-e =3;pnum="1:devid=PESG55473 :J

v Save settings to project file [Save settings to reqgistry, use it as default.

Communication state on startup and on project load
" Qpen port at startup
{* Do not open port at startup
" Store port state on exit, apply it on startup

[Store state to project file, apply upon its load Advanced...
oK | Cancel | |

Figure 13. FreeMASTER communication setup window

2. Ensure, that your computer is communicating with the plugged board. Unplug and then plug in the USB
cable and reopen the FreeMASTER project.

8.2 TSA replacement with ELF file

The Freemaster project for motor control example uses Target-Side Addressing (TSA) information about
variable objects and types to be retrieved from the target application by default. With the TSA feature, you
can describe the data types and variables directly in the application source code and make this information
available to the FreeMASTER tool. The tool can then use this information instead of reading symbol data from
the application’s ELF/Dwarf executable file.

FreeMASTER reads the TSA tables and uses the information automatically when an MCU board is connected.
A great benefit of using the TSA are no issues with correct path to ELF/Dwarf file. The variables described

by TSA tables may be read-only, so even if FreeMASTER attempts to write the variable, the value is actively
denied by the target MCU side. The variables not described by any TSA tables may also become invisible and
protected even for read-only access.

The use of TSA means more memory requirements for the target. If you don't want to use the TSA feature, you
need to modify the example code and Freemaster project. Follow these steps:

* Open motor control project and rewrite macro FMSTR_USE_TSA from 1 to 0 in freemaster_cfg.h file.

* Build, download and run motor control project

* Open FreeMASTER project and click to Project — Options (or use shortcut Ctrl+T)

Click to MAP Files tab and find Default symbol file (ELF/Dwarf executable file) located in IDE Output folder

PMSMMCXN10 All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 0 — 9 January 2023

20/60

NXP Semiconductors PMSMMCXN10

MCUXpresso SDK Field-Oriented Control (FOC) of 3-Phase PMSM and BLDC motors

Opticns X

Comm MAF Files l Pack Dir] HTML Pages] Demo Mode] Views & Bars]

Default symbol file: |3mu:u_a|:u|:us'-m::J:umsm'-pmsm_enc'-J::m?"'-Jar'-J:Iel:uug'-m:u:umsm.u:uuﬂ

File format: Binary ELF with DWARF2/DWARF4 dbgformat. = Edit
List of all valid A boardsevkmimaat 1160%demo_apps'mc_pmsmpmsm_e
symbol files:
Maote: The file selected in the list will be used as default symbaol file
when the project is opened
Behavior
|

[Prompt to reload symbals when symbol file changes and show missing symbals
" Always ¢ Except afterinitial project load

QK | Cancel

Figure 14. Default symbol file
¢ Click to OK and restart FreeMASTER communication.

For more information check FreeMASTER User Guide

8.3 MCAT FreeMASTER interface (Motor Control Application Tuning)

The PMSM sensor/sensorless FOC application can be easily controlled and tuned using the Motor Control
Application Tuning (MCAT) plug-in for PMSM. The MCAT for PMSM is a user-friendly page, which runs within
FreeMASTER. The tool consists of the tab menu, and workspace shown in Figure 15. Each tab from the tab
menu represents one sub-module which enables tuning or control different aspects of the application. Besides
the MCAT page for PMSM, several scopes, recorders, and variables in the project tree are predefined in the
FreeMASTER project file to further simplify the motor parameter tuning and debugging.

When the FreeMASTER is not connected to the target, the “Board found” line (2) shows “Board ID not found”.
When the communication with the target MCU is established, the “Board found” line is read from Board ID
variable watch and displayed. If the connection is established and the board ID is not shown, press F5 to reload
the MCAT HTML page.

There are three action buttons in MCAT(3):

* Load data - MCAT input fields (e.g. motor parameters) are loaded from mX_pmsm_appconfig.h file (JSON
formatted comments). Only existing mX_pmsm_appconfig.h files can be selected for loading. Actually loaded
mX_pmsm_appcofig.h file is displayed in grey field (7).

» Save data - MCAT input fields (JSON formatted comments) and output macros are saved to
mX_pmsm_appconfig.h file. Up to 9 files (m1-9_pmsm_appconfig.h) can be selected. A pop up window with
user motor ID and description appears when a different mX_pmsm_appcofig.h file is selected. The motor ID
and description is also saved in mX_pmsm_appcofig.h in form of JSON comment. At single motor control
application the embedded code #includes m1_pmsm_appcofig.h only. Therefore, saving to higher indexed
mX_pmsm_appcofig.h files has no effect at compilation stage.

PMSMMCXN10 All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 0 — 9 January 2023

21/60

https://www.nxp.com/docs/en/user-guide/FMSTERUG.pdf

NXP Semiconductors PMSMMCXN10

MCUXpresso SDK Field-Oriented Control (FOC) of 3-Phase PMSM and BLDC motors

* Update target - writes the MCAT calculated tuning parameters to FreeMASTER Variables which effectively
updates the values on target MCU. These tuning parameters are updated in MCU's RAM memory. To write
these tuning parameters to MCU's flash memory, m1_pmsm_appcofig.h must be saved, code re-compiled and
downloaded to MCU.

Note: Path to mX_pmsm_appcofig.h file composes also from Board ID value. Therefore, FreeMASTER must
be connected to target and Board ID value read prior using Save/Load buttons.

Note: Only Update target button updates values on target in real-time. Load/Save buttons operate with
mX_pmsm_appcofig.h file only.

Note: MCAT may require internet connection. If no internet connection is available, CSS and icons may not be
properly loaded.

@ pmsm_float_enc - FreeMASTER - a X
Fle Edt View Eplorer Piojed Tooks Help
SHO@ -~ BBl e .0] &S 2 Tohoma =8 =[mlsu @9 El==
& Nome v
T Mator M1 - N 1 Application Switch OFF [0] ENUM
1. Scalar & Votage Contrel Choose input file... = & Load Choose output file... > Ersave [2 Update target M1 Application State sToP ENuM
2, Cument Centrol data data 3 M1MCAY Contrel SELD. FOC [EM
Demo Mode Position OFF [0] ENUM
3, Speed Control Demo Mode Speed OFF [0] ENUM
4,Pasition Control - M1 Position Required 0 rev
2 Motoricemisicaion Board found: L ey B i M1 Position Actual 0 rev
. Constonts : e Tle y pplication concep 1 speed Required 0 pm
%12 7. Constants (MID) LPCXPRESSO55536 e I / M1 Speed Actual 0 rpm
L o . o M1 DCB Voltage Filtered 244 volts
5 A position and speed estimation method without position transducer is M1 Cycle Nurber 2012 DEC
| applied for drives with Permanent Magnet Synchronous Motor (PMSM). By M1 Cyc Hurber Maxinum = oec
| e ‘ Fa g 2 i M1 CPU Frequency 150 iz
| ; integrating methods, i.e. using a speed reference for zero speed startup and iy P =
I IZpmsi_sppconno low speed acceleration, and back-EMF for mid-high speed operation, the M1 Som Control Loop Frequency 1000 ta
Motor 1D: Linix rotor position can be estimated and contralled over the full speed range. In Ll e
order to achieve correct operation from zero speed, the two techniques are Feature Encoder 1 e
Appilationidescrgiion combined with a crossover function based on the speed reference [eshos O Wenimi g =
JEr—— T : =
M1 Fault Captured o DEC
4 NI M1 Fault Captured Over Current OFF EnUM
| M1 Fault Captured DCBus Undervoltag OFF ENUM
| M1 Fault Captured DCBus Overvaitage OFF ENUM
= i M1 Fault Captured Overload oFF ENUM
s M1 Fault Captured oFF Enur
M1 Fault Captured Blocked Rotor OFF EMUM
11 Fault Clear Ho = |-
M1 MCAT POSPE Sensor rless
APP: State Spin ENUM
APD: MID to Spin request oFF Enum
1 APP: Spin to MID request OFF ENUM
APP: Fault Mo fault ENUM
o
et 1 - Tab content
2 — Connected board
3 — User buttons
4 -Tab menu
5 —Project Tree
6 — Variable Watch
Y 4 R e i e i websits i
| b .4 INDUSTRIAL MOTOR CONTROL A \TION TUNING ‘ 7 — Loaded appconfig.h
PBlaopication Co.. [TNBREA Smtl conprtpape |
Open an ssting document RS232 UART Communication; COM1E; specd=19200

Figure 15. FreeMASTER + MCAT layout

In the default configuration, the following tabs are available:

* “Application concept”—welcome page with the PMSM sensor/sensorless FOC diagram and a short
description of the application.

» “Parameters”—this page enables you to modify the motor parameters, specification of hardware and
application scales, alignment, and fault limits.

* “Current loop”—current loop PI controller gains and output limits.

* “Speed loop”—this tab contains fields for the specification of the speed controller proportional and integral
gains, as well as the output limits and parameters of the speed ramp. The position proportional controller
constant is also set here.

» “Sensors”—this page contains the encoder parameters and position observer parameters. Not available for all
devices.

» “Sensorless”—this page enables you to tune the parameters of the BEMF observer, tracking observer, and
open-loop startup.

PMSMMCXN10 All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 0 — 9 January 2023

22/60

NXP Semiconductors

PMSMMCXN10

MCUXpresso SDK Field-Oriented Control (FOC) of 3-Phase PMSM and BLDC motors

* “Output file"—this tab shows all the calculated constants that are required by the PMSM sensor/sensorless
FOC application. It is also possible to generate the m1_pmsm_appconfig.h file, which is then used to preset
all application parameters permanently at the project rebuild.

* "Online update" — this tab shows actual values of variables on target and new calculated values, which can
be used for update variables on the target.

The following sections provide simple instructions on how to identify the parameters of a connected PMSM

motor and how to appropriately tune

8.3.1 MCAT tabs' description

the application.

This chapter describes MCAT input parameres and equations used to calculate MCAT output (generated)
parameters. In the default configuration, the below described tabs are available. Some tabs may be missing
if not supported in the embedded code. There are general constants used at MCAT calutations listed in the

following table:

Table 6. Constants used in equations

Constant Value Unit
UmaxCoeff 1.73205 -
DiscMethodFactor 1 -
k_factor 100 -
pi 3.1416 -

8.3.1.1 Application concept

This tab is a welcome page with the PMSM sensor/sensorless FOC diagram and a short description of the

application.

8.3.1.2 Parameters

This tab enables modification of motor parameters, specification of hardware and application scales, alignment,
and fault limits. All inputs are described in the following table. MCAT group and MCAT name helps to locate the
parameter in MCAT layout. Equation name represents the input parameter in equations bellow.

Table 7. Parameters tab inputs

MCAT group MCAT name

Equation name

Description

Unit

Motor PP

parameters

Pp

Motor number of pole-pairs.
Obtain from motor manufacturer
or use the pole-pair assitant to
determine and then fill manually.

Rs

Rs

Stator phase resistance. Obtain
from motor manufacturer or
use the electrical parameters
identification and then fill
manually.

[l

Ld

Ld

Stator direct inductance. Obtain
from motor manufacturer or
use the electrical parameters
identification and then fill
manually.

(H]

Lq

PMSMMCXN10

Lg

All information provided in this document is subject to legal disclaimers.

Stator quadrature inductance.
Obtain from motor manufacturer

(H]

© 2023 NXP B.V. All rights reserved.

User guide

Rev. 0 — 9 January 2023

23/60

NXP Semiconductors

PMSMMCXN10

MCUXpresso SDK Field-Oriented Control (FOC) of 3-Phase PMSM and BLDC motors

Table 7. Parameters tab inputs...continued

MCAT group

MCAT name

Equation name

Description

Unit

or use the electrical parameters
identification and then fill
manually.

Ke

Ke

Motor electrical constant. Obtain
from motor manufacturer or use
the Ke identification and then fill
manually.

[V.sec/rad]

Drive inertia (motor + plant). Use
the mechanical identification and
then fill manually.

[kg.m2]

Iph nom

IphNom

Nominal motor current. Obtain
from motor manufacturer.

[A]

Uph nom

UphNom

Nominal motor voltage. Obtain
from motor manufacturer.

\d!

N nom

Nnom

Nominal motor speed. Obtain
from motor manufacturer.

[rom]

Hardware scales

| max

Imax

Current sensing HW scale. Keep
as-is in case of standard NXP
HW or recalculate accoording to
own schematic.

[A]

U DCB max

UdcbMax

DCBus voltage sensing HW
scale. Keep as-is in case of
standard NXP HW or recalculate
accoording to own schematic.

\d!

Fault limits

U DCB trip

UdcbTrip

DCBus braking resistor
threshold. Braking resistor's
transitor is turned on when
DCbus voltage exceeds this
threshold.

\d!

U DCB under

UdcbUnder

DCBus under voltage fault
threshold

\d!

U DCB over

UdcbOver

DCBus over voltage fault
threshold

\d!

N over

Nover

Over speed fault threshold

[rom]

N min

Nmin

Minimal closed loop speed.
When the required speed ramps
down under this threshold the
motor control state machine
goes to freewheel state where
top and bottom transistors are
turned off and motor speeds
down freely. Applies only for
sensorless operation.

[rom]

E block

Eblock

E block per

EblockPer

Blocked rotor detection. When
Bemf voltage drops under E
block threshold for more than E
block per (fast loop ticks), the
blocked rotor fault is detected.

\d!

PMSMMCXN10

All information provided in this document is subject to legal disclaimers.

© 2023 NXP B.V. All rights reserved.

User guide

Rev. 0 — 9 January 2023

24/60

NXP Semiconductors

PMSMMCXN10

MCUXpresso SDK Field-Oriented Control (FOC) of 3-Phase PMSM and BLDC motors

Table 7. Parameters tab inputs...continued

MCAT group

MCAT name

Equation name

Description

Unit

Application
scales

N max

Nmax

Application speed scale. Keep
about 10% margin above N over.

[rom]

UDCBIIRFO

UdcblIRfO

Cut-off frequency of DCBus IIR
filter

(Hz]

Calibration duration

CalibDuration

ADC (phase current offset)
calibration duration. Done every
time transitioning from STOP to
RUN.

[sec]

Fault duration

FaultDuration

After fault condition disappeares
wait defined time to clear
pending faults bitfield and
transition to STOP state.

[sec]

Freewheel duration

FreewheelDuration

Free-wheel state duration.
Freewheel state in entered when
ramped speed drops under N
min.

[sec]

Scalar Ug min

ScalarUgMin

Scalar control voltage minimal
value.

\d!

Alignment

Align voltage

AlignVoltage

Motor alignment voltage.

\d!

Align duration

AlignDuration

Motor alignment duration.

[sec]

Output equations (applies for saving to mX_pmsm_appcofig.h and also for updating a corresponding
FreeMASTER variables):

M1_U_MAX = UdcbMax / UmaxCoeff;

M1_FREQ_MAX = Nmax / 60 * Pp;

M1_ALIGN_DURATION = AlignDuration / speedLoopSampleTime;
M1_CALIB_DURATION = CalibDuration / speedLoopSampleTime;
M1_FAULT_DURATION = FaultDuration / speedLoopSampleTime;
M1_FREEWHEEL_DURATION = FreewheelDuration / speedLoopSampleTime;
M1_E_BLOCK_PER = EblockPer;

M1_SPEED_ANGULAR_SCALE =60/ (Pp * 2 * pi);

M1_N_MIN = Nmin /60 * (Pp * 2 * pi);

M1_N_MAX = Nmax / 60 * (Pp * 2 * pi);

M1_N_ANGULAR_MAX = (60 / (Pp * 2 * pi));

M1_N_NOM = Nnom /60 * (Pp * 2 * pi);

M1_N_OVERSPEED = Nover /60 * (Pp * 2 * pi);

M1_UDCB_IIR_BO0 = (2 * pi * UdcblIRf0 * currentLoopSampleTime) / (2 + (2 * pi * UdcblIRfO *
currentLoopSampleTime));

M1_UDCB_IIR_B1 = (2 * pi * UdcblIRf0 * currentLoopSampleTime) / (2 + (2 * pi * UdcblIRfO *
currentLoopSampleTime));

PMSMMCXN10
User guide

All information provided in this document is subject to legal disclaimers.

Rev. 0 — 9 January 2023

© 2023 NXP B.V. All rights reserved.

25/60

NXP Semiconductors PMSMMCXN10

MCUXpresso SDK Field-Oriented Control (FOC) of 3-Phase PMSM and BLDC motors

M1_UDCB_IIR_A1 = -(2 * pi * UdcblIRf0 * currentLoopSampleTime - 2) / (2 + (2 * pi * UdcblIRf0 *
currentLoopSampleTime));

M1_SCALAR_VHZ_FACTOR_GAIN = UphNom*k_factor/100/(Nnom*Pp/60);
M1_SCALAR_INTEG_GAIN = 2*pi*Pp*Nmax/60*currentLoopSampleTime/pi;
M1_SCALAR_RAMP_UP = speedLoopincUp*currentLoopSampleTime/60*Pp;
M1_SCALAR_RAMP_DOWN = speedLoopincDown*currentLoopSampleTime/60*Pp;

8.3.1.3 Current loop

This tab enables current loop PI controller gains and output limits tuning. All inputs are described in the
following table. MCAT group and MCAT name helps to locate the parameter in MCAT layout. Equation name
represents the input parameter in equations bellow.

Table 8. Current loop tab input
MCAT group MCAT name Equation name Description Unit

Loop parameters | Sample time currentLoopSampleTime Fast control loop period. This [sec]
disabled value is read from
target via FreeMASTER because
application timing is set in
embedded code by peripherals
setting. This value is accesible
only if target is not connected
and value cannot be obtained
from target.

FO currentLoopF0 Current controller's bandwidth [Hz]

g currentLoopKsi Current controller's attenuation |-
Current PI Output limit currentLoopOutputLimit Current controllers' output [%]
controller limits voltage limit = Duty cycle limit.

Be careful setting this limit above
95% because it affects current
sensing (Some minimal bottom
transistors on time is required).

Output equations (applies for saving to mX_pmsm_appcofig.h and also for updating a corresponding
FreeMASTER variables):

M1_CLOOP_LIMIT = currentLoopOutputLimit / UmaxCoeff / 100;

M1_D_KP_GAIN = (2 * currentLoopKsi * 2 * pi * currentLoopFO0 * Ld) - Rs;

M1_D_KI_GAIN = (2 * pi * currentLoopF0)*2 * Ld * currentLoopSampleTime / DiscMethodFactor;
M1_Q_KP_GAIN = (2 * currentLoopKsi * 2 * pi * currentLoopFO * Lq) - Rs;

M1_Q_KI_GAIN = (2 * pi * currentLoopF0)"2 * Lq * currentLoopSampleTime / DiscMethodFactor;

8.3.1.4 Speed loop

This tab enables speed loop PI controller gains and output limits tuning, required speed ramp parameters,
feedback speed filter tuning, and position P controller gain tuning (available at sensored/encoder applications
only). MCAT group and MCAT name helps to locate the parameter in MCAT layout. Equation name represents
the input parameter in equations bellow.

PMSMMCXN10 All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 0 — 9 January 2023

26 /60

NXP Semiconductors PMSMMCXN10

MCUXpresso SDK Field-Oriented Control (FOC) of 3-Phase PMSM and BLDC motors

Table 9. Speed loop tab input
MCAT group MCAT name Equation name Description Unit

Loop parameters | Sample time speedLoopSampleTime Slow control loop period. This [sec]
disabled value is read from
target via FreeMASTER because
application timing is set in
embedded code by peripherals
setting. This value is accesible
only if target is not connected
and value cannot be obtained
from target.

FO speedLoopF0 Speed controller's bandwidth [Hz]
g speedLoopKsi Speed controller's attenuation -
Speed ramp Inc up speedLooplncUp Required speed maximal [rpm/sec]
acceleration
Inc down speedLoopincDown Required speed maximal [rpm/sec]
decceleration
Actual speed Cut-off freq speedLoopCutOffFreq Speed feedback (before entering |[Hz]
filter PI subtraction) filter bandwidth.
Speed PI Upper limit speedLoopUpperLimit Maximal required Q-axis current |[A]
controller limits (Speed controller's output). Q-

axis current limitation equals to
motor torque limitation.

Lower limit speedLoopLowerLimit Minimal required Q-axis current |[A]
(Speed controller's output). Q-
axis current limitation equals to
motor torque limitation.

Position P PL_Kp speedLoopPLKp Position controller proportional
controller constant in time domain.
constans

Output equations (applies for saving to mX_pmsm_appcofig.h and also for updating a corresponding
FreeMASTER variables):

varKt = 3 * Ke / (sqrt(3));

M1_SPEED_PI_PROP_GAIN = (2 * pi /60 * (4 * speedLoopKsi * pi * speedLoopF0) * J / varKt);

M1_SPEED_PI_INTEG_GAIN = (2 * pi / 60 * ((2 * pi * speedLoopF0) * (2 * pi * speedLoopF0) * J) / (varKt * 10)
* speedLoopSampleTime);

M1_SPEED_RAMP_UP = (speedLooplncUp * speedLoopSampleTime / (60 / (Pp * 2 * pi)));
M1_SPEED_RAMP_DOWN = (speedLoopIincDown * speedLoopSampleTime / (60 / (Pp * 2 * pi)));
M1_SPEED_IIR_BO0= (2 * pi * speedLoopCutOffFreq * currentLoopSampleTime) /(2 + (2 * pi *
speedLoopCutOffFreq * currentLoopSampleTime));

M1_SPEED_IIR_B1 = (2 * pi * speedLoopCutOffFreq * currentLoopSampleTime) / (2 + (2 * pi *
speedLoopCutOffFreq * currentLoopSampleTime));

M1_SPEED_IIR_A1 = -(2 * pi * speedLoopCutOffFreq * currentLoopSampleTime -2) /(2 + (2 * pi *
speedLoopCutOffFreq * currentLoopSampleTime));

PMSMMCXN10 All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 0 — 9 January 2023

27160

NXP Semiconductors

PMSMMCXN10

MCUXpresso SDK Field-Oriented Control (FOC) of 3-Phase PMSM and BLDC motors

8.3.1.5 Sensors

Available at sensored (encoder) applications only. This tab enables setting the encoder properties and tuning
encoder's tracking observer. MCAT group and MCAT name helps to locate the parameter in MCAT layout.

Equation name represents the input parameter in equations bellow.

Table 10. Sensors tab input

MCAT group

MCAT name

Equation name

Description

Unit

Quadrature
encoder

Pulse number

sensorEncPulseNumber

Number of quadrature encoder
pulses. Obtain this value from
encoder manufacturer OR
estimate based on speed/
position comparison of Scalar
controlled application with
encoder processing running on
background.

[pulses]

Direction

sensorEncDir

Encoder direction / Phase A&B
order.

Minimal speed

sensorEncNmin

Encoder minimal speed.

[rom]

Position
observer
parameters

Sample time

sensorObsrvParSampleTime

Current control loop sampling
period. This disabled value
is read from target via Free

[sec]

MASTER because application
timing is set in embedded code
by peripherals setting. This value
is accesible only if target is not
connected and value cannot be
obtained from target.

FO sensorObsrvParF0 Position observer bandwidth [Hz]

Position observer attenuation -

g sensorObsrvParKsi

Output equations (applies for saving to mX_pmsm_appcofig.h and also for updating a corresponding
FreeMASTER variables):

M1_POSPE_KP_GAIN = (4.0 * pi * sensorObsrvParKsi * sensorObsrvParF0);
M1_POSPE_KI_GAIN = ((2*pi*sensorObsrvParF0)*2 * sensorObsrvParSampleTime);
M1_POSPE_INTEG_GAIN = (sensorObsrvParSampleTime / pi / DiscMethodFactor);
M1_POSPE_ENC_N_MIN = sensorEncNmin;

M1_POSPE_MECH_POS_GAIN = (32768/((sensorEncPulseNumber*4)/2));

8.3.1.6 Sensorless

This tab enables Bemf observer and Tracking observer parameters tuning and open-loop startup tuning. MCAT
group and MCAT name helps to locate the parameter in MCAT layout. Equation name represents the input
parameter in equations bellow.

Table 11. Sensorless tab input

MCAT group MCAT name Equation name Description Unit

BEMF observer |FO sensorlessBemfObsrvF0 BEMF observer bandwidth [Hz]
parameters 4 sensorlessBemfObsrvKsi BEMF observer attenuation -

PMSMMCXN10 All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.
User guide Rev. 0 — 9 January 2023

28/60

NXP Semiconductors PMSMMCXN10

MCUXpresso SDK Field-Oriented Control (FOC) of 3-Phase PMSM and BLDC motors

Table 11. Sensorless tab input...continued

MCAT group MCAT name Equation name Description Unit
Tracking FO sensorlessTrackObsrvF0 Tracking observer bandwidth [Hz]
observer . . .
parameters g sensorlessTrackObsrvKsi Tracking observer attenuation -
Open loop start- | Start-up ramp sensorlessStartupRamp Open loop startup ramp [rpm/sec]
up parameters
Start-up current sensorlessStartupCurrent Open loop startup current [A]
Merging Speed sensorlessMergingSpeed Merging speed [rpm]
Merging Coefficient |sensorlessMergingCoeff Merging coefficient (100% = [%]

merging is done within one
electrical revolution)

Output equations (applies for saving to mX_pmsm_appcofig.h and also for updating a corresponding
FreeMASTER variables):

M1_I_SCALE = (Ld / (Ld + currentLoopSampleTime * Rs));

M1_U_SCALE = (currentLoopSampleTime / (Ld + currentLoopSampleTime * Rs));

M1_E_SCALE = (currentLoopSampleTime / (Ld + currentLoopSampleTime * Rs)) ;

M1_WI_SCALE = (Lq * currentLoopSampleTime / (Ld + currentLoopSampleTime * Rs));
M1_BEMF_DQ_KP_GAIN = ((2 * sensorlessBemfObsrvKsi * 2 * pi * sensorlessBemfObsrvF0 * Ld - Rs));
M1_BEMF_DQ_KI_GAIN = (Ld * (2 * pi * sensorlessBemfObsrvF0)* 2 * currentLoopSampleTime);
M1_TO_KP_GAIN = 2 * sensorlessTrackObsrvKsi * 2 * pi * sensorlessTrackObsrvFO0;

M1_TO_KI_GAIN = ((2 * pi * sensorlessTrackObsrvF0)* 2) * currentLoopSampleTime;
M1_TO_THETA_GAIN = (currentLoopSampleTime / pi);

M1_OL_START_RAMP_INC = (sensorlessStartupRamp * currentLoopSampleTime / (60 / (Pp * 2 * pi)));
M1_MERG_SPEED_TRH = (sensorlessMergingSpeed / (60 / (Pp * 2 * pi)));

M1_MERG_COEFF = ((sensorlessMergingCoeff / 100) * (60 / (Pp * sensorlessMergingSpeed)) /
currentLoopSampleTime / 2 / 32768);

TO_IIR_cutoff _freq=1/(2 * speedLoopSampleTime) * 0.8;

M1_TO_SPEED_IIR_BO0 = (2 * pi * TO_IIR_cutoff_freq * currentLoopSampleTime)/ (2 + (2 * pi *
TO_IIR_cutoff_freq * currentLoopSampleTime));

M1_TO_SPEED_IIR_B1 = (2 * pi * TO_IIR_cutoff_freq * currentLoopSampleTime)/ (2 + (2 * pi *
TO_IIR_cutoff_freq * currentLoopSampleTime));

M1_TO_SPEED_IIR_A1 =-(2 * pi * TO_IIR_cutoff_freq * currentLoopSampleTime - 2) / (2 + (2 * pi *
TO_IIR_cutoff_freq * currentLoopSampleTime));

8.4 Motor Control Modes

In the "Project Tree" you can choose between the scalar control and the FOC control using the appropriate
FreeMASTER tabs. The application can be controlled through the FreeMASTER variables watch which
correspond to the control structure selected in FreeMASTER project tree. This is useful for application tuning
and debugging. Required control structure must be selected in the "M1 MCAT Control" variable. Then use "M1
Application Switch" variable to turn on or off the application. Set/clear "M1 Application Switch" variable also
enables/disables all PWM channels.

PMSMMCXN10 All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 0 — 9 January 2023

29/60

NXP Semiconductors PMSMMCXN10

MCUXpresso SDK Field-Oriented Control (FOC) of 3-Phase PMSM and BLDC motors

8.4.1 Control structure

The scalar control diagram is shown in figure below. It is the simplest type of motor-control techniques. The
ratio between the magnitude of the stator voltage and the frequency must be kept at the nominal value. Hence,
the control method is sometimes called Volt per Hertz (or V/Hz). The position estimation BEMF observer and
tracking observer algorithms (see Sensorless PMSM Field-Oriented Control (document DRM148) for more
information) run in the background, even if the estimated position information is not directly used. This is useful
for the BEMF observer tuning.

Integrator

Figure 16. Scalar control mode

The block diagram of the voltage FOC is in figure below. Unlike the scalar control, the position feedback is
closed using the BEMF observer and the stator voltage magnitude is not dependent on the motor speed.
Both the d-axis and g-axis stator voltages can be specified in the “M1 MCAT Ud Required” and “M1 MCAT Uq
Required” fields. This control method is useful for the BEMF observer functionality check.

T 1
SVM VSI
N
2 e

Position / Speed sensor O
evaluation

ud_mq uﬂ'_qu

Figure 17. Voltage FOC control mode

The current FOC (or torque) control requires the rotor position feedback and the currents transformed into a d-
g reference frame. There are two reference variables (“M1 MCAT Id Required” and “M1 MCAT Iq Required”)
available for the motor control, as shown in the block diagram in figure below. The d-axis current component
"M1 MCAT Id Required" is responsible for the rotor flux control. The g-axis current component of the current
"M1 MCAT Iq Required" generates torque and, by its application, the motor starts running. By changing the

PMSMMCXN10 All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 0 — 9 January 2023

30/60

https://www.nxp.com/doc/DRM148

NXP Semiconductors PMSMMCXN10

MCUXpresso SDK Field-Oriented Control (FOC) of 3-Phase PMSM and BLDC motors

polarity of the current "M1 MCAT Iq Required", the motor changes the direction of rotation. Supposing that
the BEMF observer is tuned correctly, the current Pl controllers can be tuned using the current FOC control
structure.

I

d_neg $

fq_mﬂ

Pl controller Uy e

is e Pl controller

;Lr rual

Position / Speed
evaluation

Figure 18. Current (torque) control mode

The speed PMSM sensor/sensorless FOC (its diagram is shown in figure below) is activated by enabling the
speed FOC control structure. Enter the required speed into the “M1 Speed Required” field. The d-axis current
reference is held at 0 during the entire FOC operation.

Position / Speed
evaluation

Figure 19. Speed FOC control mode

The position PMSM sensor FOC is shown in figure below (available for sensored/encoder based applications
only). The position control using the P controller can be tuned in the “Speed loop” menu tab. An encoder sensor
is required for the feedback. Without the sensor, the position control does not work. A braking resistor is missing
on the FRDM-MC-LVPMSM board. Therefore, it is needed to set a soft speed ramp (in the “Speed loop” menu

PMSMMCXN10 All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 0 — 9 January 2023

31/60

NXP Semiconductors PMSMMCXN10

MCUXpresso SDK Field-Oriented Control (FOC) of 3-Phase PMSM and BLDC motors

tab) because the voltage on the DC-bus can rise when braking the quickly spinning shaft. It may cause the
overvoltage fault.

-

Pl controller

emjec We reg J’q_rm;
— @ @[-

3 A
P controller Pl controller FI controller
Wy
— | Position / Speed
O rear evaluation

Figure 20. Position FOC control mode

8.5 Switch between Spin and MID

User can switch between two modes of application: Spin and MID (Motor identification). Spin mode is used for
control PMSM (see Section "MCAT FreeMASTER interface (Motor Control Application Tuning)"). MID mode is
used for motor parameters identification (see Section "Motor parameter identification using MID "). Actual mode
of application is shown in APP: State variable. The mode is changed by writing one to APP: MID to Spin request
or APP: Spin to MID request variables. The transition between Spin and MID can be done only if actual mode

is in a defined stop state (e.g. MID not in progress or motor stopped). The result of the change mode request is
shown in APP: Fault variable. MID fault occurs when parameters identification still runs or MID state machine

is in the fault state. Spin fault occurs when M1 Application switch variable watch is ON or M1 Application state
variable watch is not STOP.

8.6 ldentifying parameters of user motor

Because the model-based control methods of the PMSM drives provide high performance (e.g. dynamic
response, efficiency), obtaining an accurate model of a motor is an important part of the drive design and
control. For the implemented FOC algorithms, it is necessary to know the value of the stator resistance R,
direct inductance L4, quadrature inductance L4, and BEMF constant K,. Unless the default PMSM motor
described above is used, the motor parameter identification is the first step in the application tuning. This
section shows how to identify user motor parameters using MID. MID is written in floating-point arithmetics.
Each MID algorithm is described in detail in Section "MID algorithms". MID is controlled via the FreeMASTER
"Motor Identification" page shown in Figure 21.

PMSMMCXN10 All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 0 — 9 January 2023

32/60

NXP Semiconductors

PMSMMCXN10

MCUXpresso SDK Field-Oriented Control (FOC) of 3-Phase PMSM and BLDC motors

U@g‘ﬁﬁ@ Mech Speed Decel. start

Figure 21. MID FreeMASTER control

r2d/s Rev!8’L 9 uahuary 2023

[Hame | vahwe Unit_ |Penod [ms]

MID: Command sTOP M 1000 ¢ MID Control (set Run to trigger MID)
R b ENUM 1000 .g— Actual MID SM state

APP: State MID ENUM 1000 A :
- <— /ctual application state (Spin or MID)
APP: MID Lo Spin request OFF ENUM 1000 Bt

APP: Spin to MID request OFF auM | 1000 Request to change application state
s P Nofmult |EMM 1080 |-«¢— Application fault

DIAG: Fault Pending 0 DEC 1000

DLAG: Fault Captured a DEC 1000 ’ GE‘"ETEII McC fHUIt status

DIAG: Fault DCBus Overvaltage OFF ENUM 1000

DI4G: Fault DCBus Undervoltage OFF EHUM 1000 General MC faults

DIAG: Fault Over Current OFF EHUM 1000

DIAG: Fault clear OFF ENUM 1000 — Request to EIEar MC faults

MID: Faults be 0000 BIN 1000 j MID faults and warnings

MID: Warnings b# 0000 BIN 1000
| MID: Measurement Type PP_ASSIST EwuM 1000 -#— [Veasurement type (pp assist, electrical or
RS N I = il i mechanical parameters, Ke constant)
_ MID: Known Param Rs 1] Ohm 1000

MID: Known FParam Ld i H 1000
| MID: Known Faram Lq a H 1000 = Known motor parameters

MID: Known Param Ke il Vsfrad 1000

MID: Known Param] i kgm=2 1000

MID: Known Faram B 0 Kms 00 _
| MID: Start Result b# 000000 BIN 1000 g MID start result (equals to zero

MID: Measured 1 irs 1000 =
| P = when all parameters are OK)

MID: Measured Rs 1] Ohinn 1000

MID: Measured Ld 1] H 1000
| MID: Measured L o H 1000 — Measured motor parameters
| MID: Measured Ke 1] Vs/rad 1000
| MID: Measured] 0 kgm~2 1000
| MID: Measured B i} Hms woe T

MID: Config Pp 1d Meas 0.5 A 1000]

MID: Config Pp Freq El. Required 10 Hz 1000
| MID: Config € Mode Estim RL Mode 0 ENUM 1000
| MID: Config El I DC nominal 5 A 1000
| MID: Config El I DC pasitive masx 6 A 1000
| MID: Config El I DC negative ma -6 A 1000
| MID: Config El I DC (estim Ld) 1] A 1000
| MID: Config El I DC (estim Lq) 5 A 1000
| MID: Config El DQ-switch Ld meas ENUM 1000
| MID: Config El T DC req (d-axis) 1] A 1000
| MID: Config El I DC req (g-ads) i} A 1000
| MID: Config El 1 AC req 0 A 1000

pn R L z e 1000 L Measurement configuration
_HID: Config Ke 1d Required 0.8 A 1000
| MID: Config Ke Freq El. Required 20 Hz 1000

MID: Config Mech Kt 0.5 WA 1000

MID: Config Mach Iy Startup 0.3 A 1000

MID: Config Mach Merging Coeff. 100 k. 1000

MID: Config Mach Iq Accelerate 0.3 A 1000

MID: Config Mach Ig Decelerate 0.05 A 1000

MID: Config Mech Speed Accel. start 251.327 radfs 1000

PMJ';%&)%QHQ Mech Speed Inteq. start 251.327 g 2dis 1000 | -)
information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved
345.575

33/60

NXP Semiconductors PMSMMCXN10

MCUXpresso SDK Field-Oriented Control (FOC) of 3-Phase PMSM and BLDC motors

8.6.1 Motor parameter identification using MID

The whole MID is controlled via the FreeMASTER "Variable Watch". Motor Identification (MID) sub-block shown
in Figure 21. The motor parameter identification workflow is following:

1. Setthe MID: Command variable to STOP.

2. Select the measurement type you want to perform via the MID: Measurement Type variable:
¢ PP_ASSIST - Pole-pair identification assistant.
* EL._ PARAMS - Electrical parameters measurement.
* Ke - BEMF constant measurement.
« MECH_PARAMS - Mechanical parameters measurement.

3. Insert the known motor parameters via the MID: Known Param set of variables. All parameters with a non-
zero known value are used instead of measured parameters (if necessary).

4. Set the measurement configuration paramers in the MID: Config set of variables.

5. Start the measurement by setting MID: Command to RUN.

6. Observe the MID Start Result variable for the MID measurement plan validity (see Table 14) and the actual
MID: State, MID: Faults (see Table 12), and MID: Warnings (see Table 13) variables.

7. If the measurement finishes successfully, the measured motor parameters are shown in the MID: Measured
set of variables and MID: State goes to STOP.

8.6.2 MID faults and warnings

The MID faults and warnings are saved in the format of masks in the MID: Faults and MID: Warnings variables.
Faults and warnings are cleared automatically when starting a new measurement. If a MID fault appears, the
measurement process immeadiatelly stops and brings the MID state machine safely to the STOP state. If a MID
warning appears, the measurement process continues. Warnings report minor issues during the measurement
process. See Table 12 and Table 13 for more details on individual faults and warnings.

Table 12. Measurement faults

Fault mask Fault description Fault reason Troubleshooting
b#0001 Electrical parameters Some required value Check whether measurement
measurement fault. cannot be reached or wrong | configuration is valid.
measurement configuration.
b#0010 Mechanical measurement Some part of the mechanical |Raise the MID: Config
timeout. measurement (acceleartion, |Mech Iq Accelerate or lower

deceleration) took too long the MID: Config Mech Iq
and exceeded 10 seconds. Decelerate.

Table 13. Measurement warnings

Warning mask Warning description Warning reason Troubleshooting

b#0001 K, is out of range. The measured K, is negative. |Visualy check whether the
motor was spinning properly
during the K, measurement.

The MID measurement plan is checked after starting the measurement process. If a necessary parameter is
not scheduled for the measurement and not set manually, the MID is not started and an error is reported via the
MID: Start Result variable.

PMSMMCXN10 All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 0 — 9 January 2023

34/60

NXP Semiconductors PMSMMCXN10

MCUXpresso SDK Field-Oriented Control (FOC) of 3-Phase PMSM and BLDC motors

Table 14. MID Start Result variable

MID Start Result mask Description Troubleshooting

b#00 0001 Error during initialization electrical Check whether inputs to the MCAA _
parameters measurement. EstimRLInit_FLT are valid.

b#00 0010 The Rg value is missing. Schedule electrical measurement or

enter R value manually.

b#00 0100 The Ly value is missing. Schedule electrical measurement or
enter Ly value manually.

b#00 1000 The L, value is missing. Schedule electrical measurement or
enter L, value manually.

b#01 0000 The K, value is missing. Schedule K, for measurement or enter
its value manually.

b#10 0000 The Pp value is missing. Enter the Pp value manually.

8.7 MID algorithms

This section describes how each MID algorithm works.

8.7.1 Stator resistance measurement

The stator resistance Ry is averaged from the DC steps, which are generated by the algorithm. The DC step
levels are automatically derived from the currents inserted by user. For more details, please, refer to the
documentation of AMCLIB_EstimRL function from AMMCLIib.

8.7.2 Stator inductances measurement

Injection of the AC/DC currents is used for the inductances (L, L) estimation. Injected AC/DC currents are
automatically derived from the currents inserted by user. The default AC current frequency is 500 Hz. For more
detail, please, refer to the documentation of AMCLIB_EstimRL function from AMMCLIb.

8.7.3 BEMF constant measurement

Before the actual BEMF constant K, measurement, the BEMF and Tracking observers parameters are
recalculated from the previously measured or manually set R, Ly, and L, parameters. To measure K, the motor
must spin. During the measurement, the motor is open-loop driven at the user-defined frequency MID: Config
Ke Freq El. Required with the user-defined current MID: Config Ke Id Required value. When the motor reaches
the required speed, the BEMF voltages obtained by the BEMF observer are filtered and K; is calculated:

[
HE — REMF [ﬂ]
e

When K is being measured, you have to visually check to determine whether the motor is spinning properly. If
the motor is not spinning properly, perform these steps:

* Ensure that the number of pp is correct. The required speed for the K, measurement is also calculated from
pp. Therefore, inaccuracy in pp causes inaccuracy in the resulting K.

* Increase MID: Config Ke Id Required variable to produce higher torque when spinning during the open loop.
» Decrease MID: Config Ke Freq El. Required variable to decrease the required speed for the K, measurement.

PMSMMCXN10 All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 0 — 9 January 2023

35/60

https://www.nxp.com/design/automotive-software-and-tools/automotive-math-and-motor-control-library-ammclib:AMMCLIB#design-resources
https://www.nxp.com/design/automotive-software-and-tools/automotive-math-and-motor-control-library-ammclib:AMMCLIB#design-resources

NXP Semiconductors PMSMMCXN10

MCUXpresso SDK Field-Oriented Control (FOC) of 3-Phase PMSM and BLDC motors

8.7.4 Number of pole-pair assistant

The number of pole-pairs cannot be measured without a position sensor. However, there is a simple assistant
to determine the number of pole-pairs (PP_ASSIST). The number of the pp assistant performs one electrical
revolution, stops for a few seconds, and then repeats. Because the pp value is the ratio between the electrical
and mechanical speeds, it can be determined as the number of stops per one mechanical revolution. It is
recommended not to count the stops during the first mechanical revolution because the alignment occurs during
the first revolution and affects the number of stops. During the PP_ASSIST measurement, the current loop

is enabled and the /4 current is controlled to MID: Config Pp Id Meas. The electrical position is generated by
integrating the open-loop frequency MID: Config Pp Freq El. Required. If the rotor does not move after the start
of PP_ASSIST assistant, stop the assistant, increase MID: Config Pp Id Meas, and restart the assistant.

8.7.5 Mechanical parameters measurement

The moment of inertia J and the viscous friction B can be identified using a test with the known generated
torque T and the loading torque Tjq.

dw 1
d—fm =](T — Tioad — Bwy,) [rad/s*®]

The wy, character in the equation is the mechanical speed. The mechanical parameter identification

software uses the torque profile. The loading torque is (for simplicity reasons) said to be 0 during the whole
measurement. Only the friction and the motor-generated torque are considered. During the first phase of
measurement, the constant torque T,,,¢45 is applied and the motor accelerates to 50 % of its nominal speed in
time t;. These integrals are calculated during the period from t, (the speed estimation is accurate enough) to t;:

iy
Tint =f Tdt [Nms]
L

o

£y
Wine = f wmdt [rﬂd{s]
t

o

During the second phase, the rotor decelerates freely with no generated torque, only by friction. This enables
you to simply measure the mechanical time constant t,,=J/B as the time in which the rotor decelerates from its
original value by 63 %.

The final mechanical parameter estimation can be calculated by integrating:

1 B
wm(ty) = jTint ~ @t + wm (o) [rad/s]
Te moment of inertia is:
T Tine
] = [kgm?]
Tm[mm (tl} = Wy (tU)] T Wint

PMSMMCXN10 All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.
User guide Rev. 0 — 9 January 2023

36/60

NXP Semiconductors PMSMMCXN10

MCUXpresso SDK Field-Oriented Control (FOC) of 3-Phase PMSM and BLDC motors

The viscous friction is then derived from the relation between the mechanical time constant and the moment of
inertia. To use the mechanical parameters measurement, the current control loop bandwidth fy cyrent: the speed
control loop bandwidth fy speeq, @and the mechanical parameters measurement torque Trg,,, must be set.

50% of
ﬂﬂminﬂl Aﬂmnmni
speed
= 4 \ D
F. (]
E [\ by 63%’6
— / N\
S LA e
o ! Time
u COMmstants
I Tin
r i
Iy £
Measurement
£
<
Q
j Vv
o
0
Time [s]

Figure 22. PMSM identification tab

8.8 Electrical parameters measurement control

This section describes how to control electrical parameters measurement, which contains measuring stator
resistance Rj, direct inductance Ly and quadrature inductance L. There are available 4 modes of measurement
which can be selected by MID: Config El Mode Estim RL variable.

Function MCAA_EstimRLInit_FLT must be called before the first use of MCAA_ EstimRL_FLT. Function
MCAA_EstimRL_FLT must be called periodically with sampling period F SAMPLING, which can be definied
be user. Maximum sampling frequency F_SAMPLING is 10 kHz. In the scopes under "Motor identification"
FreeMASTER sub-block can be observed measured currents, estimated parameters etc.

8.8.1 Mode 0

This mode is automatic, inductances are measured at a single operating point. Rotor is not fixed. User has
to specify nominal current (MID: Config El | DC nominal variable). The AC and DC currents are automatically
derived from the nominal current. Frequency of the AC signal set to default 500 Hz.

The function will output stator resistance R, direct inductance Ly and quadrature inductance L.

8.8.2 Mode 1
DC stepping is automatic at this mode. Rotor is not fixed. Compared to the Mode 0, there will be performed an

automatic measurement of the inductances for a definied number (NUM_MEAS) of different DC current levels

PMSMMCXN10 All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 0 — 9 January 2023

37/60

NXP Semiconductors PMSMMCXN10

MCUXpresso SDK Field-Oriented Control (FOC) of 3-Phase PMSM and BLDC motors

using positive values of the DC current. The L4, dependency map can be seen in the "Inductances (Ld, Lq)"
recorder. User has to specify following parameters before parameters estimation:

* MID: Config EI I DC (estim Lq) - Current to determine L. In most cases nominal current.
* MID: Config EI'l DC positive max - Maximum positive DC current for the L4, dependency map measurement.

Injected AC and DC currents are automatically derived from the MID: Config El | DC (estim Lq) and MID: Config
El'l DC positive max currents. Frequency of the AC signal set to default 500 Hz.

The function will output stator resistance R, direct inductance Ly, quadrature inductance Ly and Lyq
dependency map.

8.8.3 Mode 2

DC stepping is automatic at this mode. Rotor must be mechanically fixed after initial alignment with the first
phase. Compared to the Mode 1, there will be performed an automatic measurement of the inductances for

a definied number (NUM_MEAS) of different DC current levels using both positive and negative values of the
DC current. The estimated inductances can be seen in the "Inductances (Ld, Lq)" recorder. User has to specify
following parameters before parameters estimation:

* MID: Config El | DC (estim Ld) - Current to determine L. In most cases 0 A.

* MID: Config EI I DC (estim Lq) - Current to determine L. In most cases nominal current.

* MID: Config EI' | DC positive max - Maximum positive DC current for the L4, dependency map measurement.
In most cases nominal current.

* MID: Config El I DC negative max - Maximum negative DC current for the L4, dependency map
measurement.

Injected AC and DC currents are automatically derived from the MID: Config El | DC (estim Ld), MID: Config EI
I DC (estim Lq), MID: Config El | DC positive max and MID: Config El | DC negative max currents. Frequency of
the AC signal set to default 500 Hz.

The function will output stator resistance Rs, direct inductance Ly, quadrature inductance Ly and Lyq
dependency map.

8.8.4 Mode 3

This mode is manual. Rotor must be mechanically fixed after alignment with the first phase. R; is not calculated
at this mode. The estimated inductances can be observed in the "Ld" or "Lq" scopes. The following parameters
can be changed during the runtime:

* MID: Config El DQ-switch - Axis switch for AC signal injection (O for injection AC signal to d-axis, 1 for
injection AC signal to g-axis).

MID: Config El' | DC req (d-axis) - Required DC current in d-axis.

MID: Config El' | DC req (q-axis) - Required DC current in g-axis.

MID: Config El I AC req - Required AC current injected to the d-axis or g-axis.

MID: Config El | AC frequency - Required frequency of the AC current injected to the d-axis or g-axis.

8.9 Initial configuration setting and update

1. Open the PMSM control application FreeMASTER project containing the dedicated MCAT plug-in module.

2. Select the “Parameters” tab.

3. Leave the measured motor parameters or specify the parameters manually. The motor parameters can be
obtained from the motor data sheet or using the PMSM parameters measurement procedure described
in PMSM Electrical Parameters Measurement (document AN4680). All parameters provided in Table 15
are accessible. The motor inertia J expresses the overall system inertia and can be obtained using a

PMSMMCXN10 All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 0 — 9 January 2023

38/60

https://www.nxp.com/doc/AN4680

NXP Semiconductors PMSMMCXN10

MCUXpresso SDK Field-Oriented Control (FOC) of 3-Phase PMSM and BLDC motors

mechanical measurement. The J parameter is used to calculate the speed controller constant. However, the
manual controller tuning can also be used to calculate this constant.

Table 15. MCAT motor parameters

Parameter Units Description Typical range

pp [-] Motor pole pairs 1-10

Rs [Q] 1-phase stator resistance 0.3-50

Ld [H] 1-phase direct inductance |0.00001-0.1

Lq [H] 1-phase quadrature 0.00001-0.1
inductance

Ke [V.sec/rad] BEMF constant 0.001-1

J [kg.m?] System inertia 0.00001-0.1

Iph nom [A] Motor nominal phase 0.5-8
current

Uph nom V] Motor nominal phase 10-300
voltage

N nom [rpm] Motor nominal speed 1000-2000

4. Set the hardware scales—the modification of these two fields is not required when a reference to the
standard power stage board is used. These scales express the maximum measurable current and voltage
analog quantities.

5. Check the fault limits—these fields are calculated using the motor parameters and hardware scales (see
Table 16).

Table 16. Fault limits
Parameter Units Description Typical range
U DCB trip V] Voltage value at which the |U DCB Over ~ U DCB max

external braking resistor
switch turns on

U DCB under V] Trigger value at which 0 ~ U DCB Over
the undervoltage fault is
detected
U DCB over V] Trigger value at which the U DCB Under ~ U max

overvoltage fault is detected

N over [rpm] Trigger value at which the N nom ~ N max
overspeed fault is detected

N min [rpm] Minimal actual speed value |(0.05~0.2) *N max
for the sensorless control

6. Check the application scales—these fields are calculated using the motor parameters and hardware scales.

Table 17. Application scales

Parameter Units Description Typical range

N max [rpm] Speed scale >1.1* N nom

E block [V] BEMF scale ke* Nmax

kt [Nm/A] Motor torque constant -
PMSMMCXN10 All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.
User guide Rev. 0 — 9 January 2023

39/60

NXP Semiconductors PMSMMCXN10

MCUXpresso SDK Field-Oriented Control (FOC) of 3-Phase PMSM and BLDC motors

7. Check the alignment parameters—these fields are calculated using the motor parameters and hardware
scales. The parameters express the required voltage value applied to the motor during the rotor alignment
and its duration.

8. Click the “Store data” button to save the modified parameters into the inner file.

8.10 Control structure modes

1. Select the scalar control in the "M1 MCAT Control" FreeMASTER variable watch.

2. Set the "M1 Application Switch" variable to "ON". The application state changes to “RUN”.

3. Set the required frequency value in the “M1 Scalar Freq Required” variable; for example, 15 Hz in the
“Scalar & Voltage Control” FreeMASTER project tree. The motor starts running.

4. Select the “Phase Currents” recorder from the “Scalar & Voltage Control” FreeMASTER project tree.

5. The optimal ratio for the V/Hz profile can be found by changing the V/Hz factor directly using the “M1 V/Hz
factor” variable. The shape of the motor currents should be close to a sinusoidal shape (Figure 23). Use the
following equation for calculation V/Hz factor:

Uphnom) kfactor [V / HZ]

- pp * Noom .
60 100

where Uppnom is the nominal voltage, Kractor is ratio within range 0-100%, pp is the number of pole-pairs and
Npom are the nominal revolutions. Changes V/Hz factor won't be propagated to the m1_pmsm_appconfig.h!

Phase Current A Phase Current B Phase Current C

B e o o e S [S [Y [[O Y [[Y [[[|

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10 0.11 0.12 0.13
Index

Figure 23. Phase currents

6. Select the “Position” recorder to check the observer functionality. The difference between the “Position
Electrical Scalar” and the “Position Estimated” should be minimal (see Figure 24) for the Back-EMF position
and speed observer to work properly. The position difference depends on the motor load. The higher the
load, the bigger the difference between the positions due to the load angle.

PMSMMCXN10 All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 0 — 9 January 2023

40/60

NXP Semiconductors PMSMMCXN10

10.

MCUXpresso SDK Field-Oriented Control (FOC) of 3-Phase PMSM and BLDC motors

Position Electrical Scalar Position Esti

)

0.0s 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50
Index

0.000, 162.532

150

100

50+

deg
T

50

-100

=150+

Figure 24. Generated and estimated positions
If an opposite speed direction is required, set a negative speed value into the “M1 Scalar Freq Required”
variable.
The proper observer functionality and the measurement of analog quantities is expected at this step.

. Enable the voltage FOC mode in the "M1 MCAT Control" variable while the main application switch "M1

Application Switch" is turned off.
Switch the main application switch on and set a non-zero value in the “M1 MCAT Uqg Required” variable.
The FOC algorithm uses the estimated position to run the motor.

8.11 Encoder sensor setting

The encoder sensor settings are in the “Sensors” tab. The encoder sensor enables you to compute speed and
position for the sensored speed. For a proper encoder counting, set the number of encoder pulses per one
revolution and the proper counting direction. The number of encoder pulses is based on information about the
encoder from its manufacturer. If the encoder sensor has more pulses per revolution, the speed and position
computing is more accurate. The counting direction is provided by connecting the encoder signals to the NXP
Freedom board and also by connecting the motor phases. The direction of rotation can be determined as
follows:

1.

2.
3.

Navigate to the “Scalar & Voltage Control” tab in the project tree and select "SCALAR_CONTROL" in the
"M1 MCAT Control" variable.

Turn the application switch on. The application state changes to “RUN".

Set the required frequency value in the “M1 Scalar Freq Required” variable; for example 15 Hz. The motor
starts running.

. Check the encoder direction. Select the “Encoder Direction Scope” from the “Scalar & Voltage Control”

project tree. If the encoder direction is right, the estimated speed is equal to the measured mechanical
speed. If the measured mechanical speed is opposite to the estimated speed, the direction must be
changed. The first way is change "M1 Encoder Direction" variable - only 0 or 1 values is allowed. The
second way is invert the encoder wires—phase A and phase B (or the other way round).

PMSMMCXN10 All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 0 — 9 January 2023

41/60

NXP Semiconductors PMSMMCXN10

MCUXpresso SDK Field-Oriented Control (FOC) of 3-Phase PMSM and BLDC motors

M1 Speed Estimated M1 Measured Mechanical Speed

04
=0
£ E
= C
-100-
150
200
250
I o o o o o o o o e e e)y Sy |
1y 13 19 20 21 22 23 24 25 26 27
Time [sec]

Figure 25. Encoder direction—right direction

5 M1 Speed Estimated M1 Measured Mechanical Speed

60
40

20

20
=40

S AN AN NN, A, AMA AN, YA, M, Mg ML M, A

20 |

0 0.5 1.0 15 2.Il] 25 30 35
Time [sec]

Figure 26. Encoder direction—wrong direction

8.12 Alignment tuning

For the alignment parameters, navigate to the “Parameters” MCAT tab. The alignment procedure sets the rotor
to an accurate initial position and enables you to apply full start-up torque to the motor. A correct initial position
is needed mainly for high start-up loads (compressors, washers, and so on). The aim of the alignment is to have
the rotor in a stable position, without any oscillations before the startup.

1. The alignment voltage is the value applied to the d-axis during the alignment. Increase this value for a
higher shaft load.

2. The alignment duration expresses the time when the alignment routine is called. Tune this parameter to
eliminate rotor oscillations or movement at the end of the alignment process.

PMSMMCXN10 All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 0 — 9 January 2023

4260

NXP Semiconductors PMSMMCXN10

MCUXpresso SDK Field-Oriented Control (FOC) of 3-Phase PMSM and BLDC motors

8.13 Current loop tuning

The parameters for the current D, Q, and PI controllers are fully calculated using the motor parameters and no
action is required in this mode. If the calculated loop parameters do not correspond to the required response,
the bandwidth and attenuation parameters can be tuned.

1. Lock the motor shaft.

2. Set the required loop bandwidth and attenuation and click the “Update target” button in the “Current loop”
tab. The tuning loop bandwidth parameter defines how fast the loop response is whilst the tuning loop
attenuation parameter defines the actual quantity overshoot magnitude.

3. Select the “Current Controller Id” recorder.

4. Select the “Current Control” in the FreeMASTER project tree, select "CURRENT_FOC" in "M1 MCAT
Control" variable. Set the “M1 MCAT Iq required” variable to a very low value (for example 0.01), and set the
required step in “M1 MCAT Id required”. The control loop response is shown in the recorder.

5. Tune the loop bandwidth and attenuation until you achieve the required response. The example waveforms
show the correct and incorrect settings of the current loop parameters:
¢ The loop bandwidth is low (110 Hz) and the settling time of the Id current is long (Figure 27).

0.002, 0.688 — — —

MCAT id Required d Ud req

WA WA TN TP ATV IS T

Amps

o
L kS
I\IIII\IIIIIIIIII\I

0.005 0.010 0.015 0.020 0.025 0.030
Index

Figure 27. Slow step response of the Id current controller
* The loop bandwidth (400 Hz) is optimal and the response time of the Id current is sufficient (see

Figure 28).
PMSMMCXN10 All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.
User guide Rev. 0 — 9 January 2023

43/60

NXP Semiconductors PMSMMCXN10

MCUXpresso SDK Field-Oriented Control (FOC) of 3-Phase PMSM and BLDC motors

MCAT Id Required d Ud req
1o
08
806
< 0.4
0.2
g : 1 ﬁI 1
204
154
2
S0
0.5
D*E\N“‘\-
£ L
0.005 0.010 0.015 0.020 0.025 0.030
Index
Figure 28. Optimal step response of the Id current controller

» The loop bandwidth is high (700 Hz) and the response time of the Id current is very fast, but with
oscillation and overshoot (see Figure 29).

MCAT Id Required id Ud req
15 W
10__ AA,\ A A PN At A A . P P . Y
= = i e e - o LAY Bkl e T i T A WY W e W bl A R Y
g
0.5—_
0 b Pt
l 1
SN
2
o |
s
0
14
Il Il
0.005 0.010 0.015 0.020 0.025 0.030
Index
Figure 29. Fast step response of the Id current controller

8.14 Speed ramp tuning

1. The speed command is applied to the speed controller through a speed ramp. The ramp function contains
two increments (up and down) which express the motor acceleration and deceleration per second. If the
increments are very high, they can cause an overcurrent fault during acceleration and an overvoltage fault
during deceleration. In the “Speed” scope, you can see whether the “Speed Actual Filtered” waveform
shape equals the “Speed Ramp” profile.

2. The increments are common for the scalar and speed control. The increment fields are in the “Speed loop”
tab and accessible in both tuning modes. Clicking the “Update target” button applies the changes to the
MCU. An example speed profile is shown in Figure 30. The ramp increment down is set to 500 rpm/sec and
the increment up is set to 3000 rpm/sec.

PMSMMCXN10 All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 0 — 9 January 2023

4460

NXP Semiconductors PMSMMCXN10

3.

MCUXpresso SDK Field-Oriented Control (FOC) of 3-Phase PMSM and BLDC motors

The start-up ramp increment is in the “Sensorless” tab and its value is usually higher than that of the speed
loop ramp.

£9.555, 3008 630 — — —

Speed Required Speed Ramp Speed Actual Fittered

3000
2800
2600
2400
2200

£ 2000-
1800

1600

1400

70 72 74 76 78 80 82 84 85
Time [zec]

Figure 30. Speed profile

8.15 Open loop startup

1.

w

The start-up process can be tuned by a set of parameters located in the “Sensorless” tab. Two of them
(ramp increment and current) are accessible in both tuning modes. The start-up tuning can be processed in
all control modes besides the scalar control. Setting the optimal values results in a proper motor startup. An
example start-up state of low-dynamic drives (fans, pumps) is shown in Figure 31.

Select the “Startup” recorder from the FreeMASTER project tree.

Set the start-up ramp increment typically to a higher value than the speed-loop ramp increment.

. Set the start-up current according to the required start-up torque. For drives such as fans or pumps, the

start-up torque is not very high and can be set to 15 % of the nominal current.

. Set the required merging speed—when the open-loop and estimated position merging starts, the threshold

is mostly set in the range of 5 % ~ 10 % of the nominal speed.

. Set the merging coefficient—in the position merging process duration, 100 % corresponds to a half of

an electrical revolution. The higher the value, the faster the merge. Values close to 1 % are set for the
drives where a high start-up torque and smooth transitions between the open loop and the closed loop are
required.

. Click the “Update Target” button to apply the changes to the MCU.

Select “SPEED_FOC” in the "M1 MCAT Control" variable.

. Set the required speed higher than the merging speed.
10.
11.
12.
13.

Check the start-up response in the recorder.

Tune the start-up parameters until you achieve an optimal response.

If the rotor does not start running, increase the start-up current.

If the merging process fails (the rotor is stuck or stopped), decrease the start-up ramp increment, increase
the merging speed, and set the merging coefficient to 5 %.

PMSMMCXN10 All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 0 — 9 January 2023

45/ 60

NXP Semiconductors PMSMMCXN10

MCUXpresso SDK Field-Oriented Control (FOC) of 3-Phase PMSM and BLDC motors

0009, 0011 3 — — — — —

Position Estimated Position Open Loop Speed Ramp Open Loop Speed Actual Merging Ratio

200

1000

rpm

-1000+
1.0

' 0.5

=

Figure 31. Motor startup

8.16 BEMF observer tuning

1. The bandwidth and attenuation parameters of the BEMF observer and the tracking observer can be tuned.
Navigate to the "Sensorless" MCAT tab.

2. Set the required bandwidth and attenuation of the BEMF observer—the bandwidth is typically set to a value
close to the current loop bandwidth.

3. Set the required bandwidth and attenuation of the tracking observer—the bandwidth is typically set in the
range of 10 — 20 Hz for most low-dynamic drives (fans, pumps).

4. Click the “Update target” button to apply the changes to the MCU.

5. Select the “Observer” recorder from the FreeMASTER project tree and check the observer response in the
"Observer" recorder.

8.17 Speed PI controller tuning

The motor speed control loop is a first-order function with a mechanical time constant that depends on the
motor inertia and friction. If the mechanical constant is available, the Pl controller constants can be tuned
using the loop bandwidth and attenuation. Otherwise, the manual tuning of the P and | portions of the speed
controllers is available to obtain the required speed response (see the example response in Figure 32). There
are dozens of approaches to tune the Pl controller constants. The following steps provide an approach to set
and tune the speed PI controller for a PM synchronous motor:

1. Select the “Speed Controller” option from the FreeMASTER project tree.
2. Select the “Speed loop” tab.

3. Check the “Manual Constant Tuning” option—that is, the “Bandwidth” and “Attenuation” fields are disabled
and the “SL_Kp” and “SL_Ki” fields are enabled.
4. Tune the proportional gain:
» Set the “SL_Ki” integral gain to 0.
» Set the speed ramp to 1000 rpm/sec (or higher).
¢ Run the motor at a convenient speed (about 30 % of the nominal speed).

PMSMMCXN10 All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 0 — 9 January 2023

46/ 60

NXP Semiconductors PMSMMCXN10

MCUXpresso SDK Field-Oriented Control (FOC) of 3-Phase PMSM and BLDC motors

* Set a step in the required speed to 40 % of Nuom.

* Adjust the proportional gain “SL_Kp” until the system responds to the required value properly and without
any oscillations or excessive overshoot:
— If the “SL_Kp” field is set low, the system response is slow.
— If the “SL_Kp” field is set high, the system response is tighter.
— When the “SL_Ki” field is 0, the system most probably does not achieve the required speed.
— Click the “Update Target” button to apply the changes to the MCU.

5. Tune the integral gain:
¢ Increase the “SL_Ki"” field slowly to minimize the difference between the required and actual speeds to 0.

¢ Adjust the “SL_Ki” field such that you do not see any oscillation or large overshoot of the actual speed
value while the required speed step is applied.

* Click the “Update target” button to apply the changes to the MCU.
6. Tune the loop bandwidth and attenuation until the required response is received. The example waveforms
with the correct and incorrect settings of the speed loop parameters are shown in the following figures:

¢ The “SL_Ki” value is low and the “Speed Actual Filtered” does not achieve the “Speed Ramp” (see

Figure 32).
182.019, 851.088 [— — [—
Speed Required Speed Ramp Speed Actual Fitered
2000
1900—5
1300-5
1700—3
1auu-f
Eﬂsuu—f
14uu—f
1300—5
1200—3
11uu—f
1000-@
| Il
176 178 180 182 184 186 188 150 152
Time [zec]
Figure 32. Speed controller response—SL_Ki value is low, Speed Ramp is not achieved

* The “SL_Kp” value is low, the “Speed Actual Filtered” greatly overshoots, and the long settling time is
unwanted (see Figure 33).

PMSMMCXN10 All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 0 — 9 January 2023

47160

NXP Semiconductors PMSMMCXN10

MCUXpresso SDK Field-Oriented Control (FOC) of 3-Phase PMSM and BLDC motors

Speed Required Speed Ramp Speed Actual Fitered

2400 -

2200

2000

1800+
E
21600+

1400+

1200+

1000

800+

308 310 312 314 316 318 320 322
Time [sec]

Figure 33. Speed controller response—SL_Kp value is low, Speed Actual Filtered greatly overshoots

* The speed loop response has a small overshoot and the “Speed Actual Filtered” settling time is sufficient.
Such response can be considered optimal (see Figure 34).

fasa9m, 9ie.zes Spemired SpEmp Speed mfinered

2000—3 e — o

1auu—f

1auu-§

17uu—§

1ﬁuu—§

Eﬂsuu—f

14uu—f

1auu-§

1zuu—§

11uu—§

1000 ;M, w T
E AT N TS T T A T T T
434 436 488 450 452 454 4596 453 500

Time [sec]
Figure 34. Speed controller response—speed loop response with a small overshoot

8.18 Position P controller tuning

The position control loop can be tuned using the proportional gain “M1 Position Loop Kp Gain” variable. It is a
proportional controller that can be used to unpretend the position-control systems. The key for the the optimal
position response is a proper value of the controller, which simply multiplies the error by the proportional gain
(Kp) to get the controller output. The predefined base value can be manually changed. An encoder sensor must
be used for a working position control. The following steps provide an example of how to set the position P
controller for a PM synchronous motor:

PMSMMCXN10 All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 0 — 9 January 2023

48 /60

NXP Semiconductors PMSMMCXN10

MCUXpresso SDK Field-Oriented Control (FOC) of 3-Phase PMSM and BLDC motors

1. Select the “Position Controller” scope in "Position Control" tab in the FreeMASTER project tree.
2. Tune the proportional gain in the position P controller constant:
* Set a small value of “PL_Kp” (M1 Position Loop Kp Gain).

 Select the position control, and set the required position in "M1 Position Required" variable (for example;
10 revolutions).

¢ Select the “Position Controller” scope and watch the actual position response.
3. Repeat the previous steps until you achieve the required position response.

The “PL_Kp” value is low and the actual position response on the required position is very slow.

M1 Position Reguired M1 Position Actual

lAxis
T

I e B

281 282 283 284 285 286 287 288 289 280 291
Time [sec]

Figure 35. Position controller response—PL_Kp value is low, the actual position response is very slow

The “PL_Kp” value is too high and the actual position overshoots the required position.

M1 Position Reguired M1 Position Actual

AW AW
Vi Vi

1Axis
T

i1 AWNN AN
YAk o

898 299 800 501 802 503 504 805 506 507 808
Time [zec]

Figure 36. Position controller response—PL_Kp value is too high and the actual position overshoots

The “PL_Kp” value and the actual position response are optimal.

PMSMMCXN10 All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 0 — 9 January 2023

49 /60

NXP Semiconductors PMSMMCXN10

MCUXpresso SDK Field-Oriented Control (FOC) of 3-Phase PMSM and BLDC motors

M1 Position Reguired M1 Pesition Actual

|Axis
T

O[T T TT 7T TTTT 7177 TTT T 77T T TTTT TTTT TTTT TTTT 17T

170 171 172 173 174 175 176 177 178 179 180
Time [sec]

Figure 37. Position controller response—the actual position response is good

PMSMMCXN10 All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 0 — 9 January 2023

50/60

NXP Semiconductors PMSMMCXN10

MCUXpresso SDK Field-Oriented Control (FOC) of 3-Phase PMSM and BLDC motors

9 Conclusion

This application note describes the implementation of the sensor and sensorless Field-Oriented Control of a 3-
phase PMSM on the NXP MCX N9XX-EVK board with the FRDM-MC-LVPMSM NXP Freedom Development
Platform. The hardware-dependent part of the control software is described in Section "Hardware setup".

The motor-control application timing is described in Section "MCX N microcontrollers features and peripheral
settings" and the peripheral initialization is described in Section "Motor-control peripheral initialization". The
motor user interface and remote control using FreeMASTER are as follows. The motor parameters identification
theory and the identification algorithms are described in Section "Identifying parameters of user motor".

PMSMMCXN10 All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 0 — 9 January 2023

51/60

NXP Semiconductors PMSMMCXN10

MCUXpresso SDK Field-Oriented Control (FOC) of 3-Phase PMSM and BLDC motors

10 Acronyms and abbreviations

Table 18. Acronyms and abbreviations

Acronym Meaning

ADC Analog-to-Digital Converter

ACIM Asynchronous Induction Motor
ADC_ETC ADC External Trigger Control

AN Application Note

BLDC Brushless DC motor

CCM Clock Controller Module

CPU Central Processing Unit

DC Direct Current

DRM Design Reference Manual

ENC Encoder

FOC Field-Oriented Control

GPIO General-Purpose Input/Output

LPIT Low-power Periodic Interrupt Timer
LPUART Low-power Universal Asynchronous Receiver/Transmitter
MCAT Motor Control Application Tuning tool
MCDRV Motor Control Peripheral Drivers

MCU Microcontroller

PDB Programmable Delay Block

Pl Proportional Integral controller

PLL Phase-Locked Loop

PMSM Permanent Magnet Synchronous Machine
PWM Pulse-Width Modulation

QD Quadrature Decoder

TMR Quad Timer

USB Universal Serial Bus

XBAR Inter-Peripheral Crossbar Switch

IOPAMP Internal operational amplifier

PMSMMCXN10 Al information provided in this document is subject to legal disclaimers. ©2023 NXP B.V. Al rights reserved.
User guide Rev. 0 — 9 January 2023

52 /60

NXP Semiconductors PMSMMCXN10

MCUXpresso SDK Field-Oriented Control (FOC) of 3-Phase PMSM and BLDC motors

11 References

These references are available on www.nxp.com:

1. Sensorless PMSM Field-Oriented Control (document DRM148)

2. Motor Control Application Tuning (MCAT) Tool for 3-Phase PMSM (document AN4642)

3. PMSM Field-Oriented Control on MIMXRT10xx EVK User's Guide (document PMSMFOCRT10xxUG)
4. PMSM Field-Oriented Control on MIMXRT10xx EVK (document AN12214)

PMSMMCXN10 All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 0 — 9 January 2023

53/60

http://www.nxp.com
https://www.nxp.com/doc/DRM148
https://www.nxp.com/doc/AN4642
https://www.nxp.com/docs/en/user-guide/PMSMFOCRT10xxUG.PDF
https://www.nxp.com/docs/en/application-note/AN12214.pdf

NXP Semiconductors PMSMMCXN10

MCUXpresso SDK Field-Oriented Control (FOC) of 3-Phase PMSM and BLDC motors

12 Useful links

MCUXpresso SDK for Motor Control www.nxp.com/motorcontrol

MCX N Series Advanced Microcontrollers

FRDM-MC-PMSM Freedome Development Platform

MCUXpresso IDE - Importing MCUXpresso SDK

MCUXpresso Config Tool

MCUXpresso SDK Builder (SDK examples in several IDEs) https://mcuxpresso.nxp.com/en/welcome
Model-Based Design Toolbox (MBDT)

NooakoN -~

PMSMMCXN10 All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 0 — 9 January 2023

54 /60

https://www.nxp.com/design/designs/mcuxpresso-sdk-for-motor-control:MCUXPRESSO-SDK-MOTOR-CONTROL
https://www.nxp.com/products/processors-and-microcontrollers/arm-microcontrollers/general-purpose-mcus/mcx-arm-cortex-m/mcx-n-series:MCX-N-SERIES
https://www.nxp.com/design/development-boards/freedom-development-boards/mcu-boards/nxp-freedom-development-platform-for-low-voltage-3-phase-pmsm-motor-control:FRDM-MC-LVPMSM
https://www.nxp.com/video/mcuxpresso-ide-importing-mcuxpresso-sdk:MCUXPRESSO-IDE-IMPORTING-SDK
https://www.nxp.com/design/software/development-software/mcuxpresso-software-and-tools-/mcuxpresso-config-tools-pins-clocks-peripherals:MCUXpresso-Config-Tools
https://mcuxpresso.nxp.com/en/welcome
https://www.nxp.com/design/automotive-software-and-tools/model-based-design-toolbox-mbdt:MBDT

NXP Semiconductors PMSMMCXN10

MCUXpresso SDK Field-Oriented Control (FOC) of 3-Phase PMSM and BLDC motors

13 Revision history

Section 13 summarizes the changes done to the document since the initial release.

Table 19. Revision history
Revision number Date Substantive changes

0 01/2023 Initial release

PMSMMCXN10 All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 0 — 9 January 2023

55/60

NXP Semiconductors PMSMMCXN10

MCUXpresso SDK Field-Oriented Control (FOC) of 3-Phase PMSM and BLDC motors

14 Copyright and permission

How To Reach Us Information in this document is provided solely to enable system and
Home Page: software implementers to use NXP products. There are no express
nxp.com or implied copyright licenses granted hereunder to design or fabricate

any integrated circuits based on the information in this document. NXP

Web Support: reserves the right to make changes without further notice to any products
nxp.com/support herein.

NXP makes no warranty, representation, or guarantee regarding the
suitability of its products for any particular purpose, nor does NXP assume
any liability arising out of the application or use of any product or circuit,
and specifically disclaims any and all liability, including without limitation
consequential or incidental damages. “Typical” parameters that may

be provided in NXP data sheets and/or specifications can and do vary

in different applications, and actual performance may vary over time.

All operating parameters, including “typicals,” must be validated for

each customer application by customer's technical experts. NXP does

not convey any license under its patent rights nor the rights of others.
NXP sells products pursuant to standard terms and conditions of sale,
which can be found at the following address: nxp.com/SalesTermsand
Conditions.

While NXP has implemented advanced security features, all products may
be subject to unidentified vulnerabilities. Customers are responsible for
the design and operation of their applications and products to reduce the
effect of these vulnerabilities on customer’s applications and products, and
NXP accepts no liability for any vulnerability that is discovered. Customers
should implement appropriate design and operating safeguards to
minimize the risks associated with their applications and products.

NXP, the NXP logo, NXP SECURE CONNECTIONS FOR A SMARTER
WORLD, COOLFLUX, EMBRACE, GREENCHIP, HITAG, I12C

BUS, ICODE, JCOP, LIFE VIBES, MIFARE, MIFARE CLASSIC,

MIFARE DESFire, MIFARE PLUS, MIFARE FLEX, MANTIS, MIFARE
ULTRALIGHT, MIFARE4MOBILE, MIGLO, NTAG, ROADLINK, SMARTLX,
SMARTMX, STARPLUG, TOPFET, TRENCHMOS, UCODE, Freescale,
the Freescale logo, AltiVec, C-5, CodeTEST, CodeWarrior, ColdFire, Cold
Fire+, C-Ware, the Energy Efficient Solutions logo, Kinetis, Layerscape,
MagniV, mobileGT, PEG, PowerQUICC, Processor Expert, QorlQ, QorlQ
Qonverge, Ready Play, SafeAssure, the SafeAssure logo, StarCore,
Symphony, VortiQa, Vybrid, Airfast, BeeKit, BeeStack, CoreNet, Flexis,
MXC, Platform in a Package, QUICC Engine, SMARTMOS, Tower,
TurboLink, UMEMS, EdgeScale, EdgelLock, elQ, and Immersive3D

are trademarks of NXP B.V. All other product or service names are the
property of their respective owners. AMBA, Arm, Arm7, Arm7TDMI, Arm9,
Arm11, Artisan, big.LITTLE, Cordio, CoreLink, CoreSight, Cortex, Design
Start, DynamlQ, Jazelle, Keil, Mali, Mbed, Mbed Enabled, NEON, POP,
RealView, SecurCore, Socrates, Thumb, TrustZone, ULINK, ULINK2,
ULINK-ME, ULINK-PLUS, ULINKpro, pVision, Versatile are trademarks or
registered trademarks of Arm Limited (or its subsidiaries) in the US and/
or elsewhere. The related technology may be protected by any or all of
patents, copyrights, designs and trade secrets. All rights reserved. Oracle
and Java are registered trademarks of Oracle and/or its affiliates. The
Power Architecture and Power.org word marks and the Power and Power.
org logos and related marks are trademarks and service marks licensed
by Power.org.

PMSMMCXN10 All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 0 — 9 January 2023

56 /60

http://www.nxp.com
http://www.nxp.com/support
http://www.nxp.com/SalesTermsandConditions
http://www.nxp.com/SalesTermsandConditions

NXP Semiconductors

PMSMMCXN10

MCUXpresso SDK Field-Oriented Control (FOC) of 3-Phase PMSM and BLDC motors

15 Legal information

15.1 Definitions

Draft — A draft status on a document indicates that the content is still
under internal review and subject to formal approval, which may result
in modifications or additions. NXP Semiconductors does not give any
representations or warranties as to the accuracy or completeness of
information included in a draft version of a document and shall have no
liability for the consequences of use of such information.

15.2 Disclaimers

Limited warranty and liability — Information in this document is believed
to be accurate and reliable. However, NXP Semiconductors does not give
any representations or warranties, expressed or implied, as to the accuracy
or completeness of such information and shall have no liability for the
consequences of use of such information. NXP Semiconductors takes no
responsibility for the content in this document if provided by an information
source outside of NXP Semiconductors.

In no event shall NXP Semiconductors be liable for any indirect, incidental,
punitive, special or consequential damages (including - without limitation -
lost profits, lost savings, business interruption, costs related to the removal
or replacement of any products or rework charges) whether or not such
damages are based on tort (including negligence), warranty, breach of
contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason
whatsoever, NXP Semiconductors’ aggregate and cumulative liability
towards customer for the products described herein shall be limited in
accordance with the Terms and conditions of commercial sale of NXP
Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to

make changes to information published in this document, including without
limitation specifications and product descriptions, at any time and without
notice. This document supersedes and replaces all information supplied prior
to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed,
authorized or warranted to be suitable for use in life support, life-critical or
safety-critical systems or equipment, nor in applications where failure or
malfunction of an NXP Semiconductors product can reasonably be expected
to result in personal injury, death or severe property or environmental
damage. NXP Semiconductors and its suppliers accept no liability for
inclusion and/or use of NXP Semiconductors products in such equipment or
applications and therefore such inclusion and/or use is at the customer’s own
risk.

Applications — Applications that are described herein for any of these
products are for illustrative purposes only. NXP Semiconductors makes no
representation or warranty that such applications will be suitable for the
specified use without further testing or modification.

Customers are responsible for the design and operation of their
applications and products using NXP Semiconductors products, and NXP
Semiconductors accepts no liability for any assistance with applications or
customer product design. It is customer’s sole responsibility to determine
whether the NXP Semiconductors product is suitable and fit for the
customer’s applications and products planned, as well as for the planned
application and use of customer’s third party customer(s). Customers should
provide appropriate design and operating safeguards to minimize the risks
associated with their applications and products.

NXP Semiconductors does not accept any liability related to any default,
damage, costs or problem which is based on any weakness or default

in the customer’s applications or products, or the application or use by
customer’s third party customer(s). Customer is responsible for doing all
necessary testing for the customer’s applications and products using NXP
Semiconductors products in order to avoid a default of the applications
and the products or of the application or use by customer’s third party
customer(s). NXP does not accept any liability in this respect.

PMSMMCXN10

All information provided in this document is subject to legal disclaimers.

Terms and conditions of commercial sale — NXP Semiconductors
products are sold subject to the general terms and conditions of commercial
sale, as published at http://www.nxp.com/profile/terms, unless otherwise
agreed in a valid written individual agreement. In case an individual
agreement is concluded only the terms and conditions of the respective
agreement shall apply. NXP Semiconductors hereby expressly objects to
applying the customer’s general terms and conditions with regard to the
purchase of NXP Semiconductors products by customer.

Export control — This document as well as the item(s) described herein
may be subject to export control regulations. Export might require a prior
authorization from competent authorities.

Suitability for use in non-automotive qualified products — Unless

this document expressly states that this specific NXP Semiconductors
product is automotive qualified, the product is not suitable for automotive
use. It is neither qualified nor tested in accordance with automotive testing
or application requirements. NXP Semiconductors accepts no liability for
inclusion and/or use of non-automotive qualified products in automotive
equipment or applications.

In the event that customer uses the product for design-in and use in
automotive applications to automotive specifications and standards,
customer (a) shall use the product without NXP Semiconductors’ warranty
of the product for such automotive applications, use and specifications, and
(b) whenever customer uses the product for automotive applications beyond
NXP Semiconductors’ specifications such use shall be solely at customer’s
own risk, and (c) customer fully indemnifies NXP Semiconductors for any
liability, damages or failed product claims resulting from customer design and
use of the product for automotive applications beyond NXP Semiconductors’
standard warranty and NXP Semiconductors’ product specifications.

Translations — A non-English (translated) version of a document, including
the legal information in that document, is for reference only. The English
version shall prevail in case of any discrepancy between the translated and
English versions.

Security — Customer understands that all NXP products may be subject to
unidentified vulnerabilities or may support established security standards or
specifications with known limitations. Customer is responsible for the design
and operation of its applications and products throughout their lifecycles

to reduce the effect of these vulnerabilities on customer’s applications

and products. Customer’s responsibility also extends to other open and/or
proprietary technologies supported by NXP products for use in customer’s
applications. NXP accepts no liability for any vulnerability. Customer should
regularly check security updates from NXP and follow up appropriately.
Customer shall select products with security features that best meet rules,
regulations, and standards of the intended application and make the
ultimate design decisions regarding its products and is solely responsible
for compliance with all legal, regulatory, and security related requirements
concerning its products, regardless of any information or support that may be
provided by NXP.

NXP has a Product Security Incident Response Team (PSIRT) (reachable
at PSIRT@nxp.com) that manages the investigation, reporting, and solution
release to security vulnerabilities of NXP products.

NXP B.V. — NXP B.V. is not an operating company and it does not distribute
or sell products.

15.3 Trademarks

Notice: All referenced brands, product names, service names, and
trademarks are the property of their respective owners.

NXP — wordmark and logo are trademarks of NXP B.V.

© 2023 NXP B.V. All rights reserved.

User guide

Rev. 0 — 9 January 2023

57/60

mailto:PSIRT@nxp.com

NXP Semiconductors

PMSMMCXN10

MCUXpresso SDK Field-Oriented Control (FOC) of 3-Phase PMSM and BLDC motors

Tables

Tab. 1. Available examples and control methods 1 Tab. 11. Sensorless tab input ..., 28
Tab. 2. Linix 45ZWN24-40 motor parameters 3 Tab. 12. Measurement faultsc.c.ccccoeeiiiiiiiiiiiinienes 34
Tab. 3. Teknic M-2310P motor parameters 4 Tab. 13. Measurement warningscccceeeceeeeeeeiineen. 34
Tab. 4. MCX N9XX-EVK jumper settingsc.ccceee.. 6 Tab. 14. MID Start Result variablecccccccooeiee. 35
Tab. 5. Maximum CPU load (fast loop)ccccceeennneee. 12 Tab. 15. MCAT motor parameterscccccceeviiiiieeeenne 39
Tab. 6. Constants used in equationsccccueee 23 Tab. 16. Fault limits ..., 39
Tab. 7. Parameters tab inputscccooveveiein. 23 Tab. 17. Application scalescocccciiririiieeenenennn. 39
Tab. 8. Current loop tab input ... 26 Tab. 18. Acronyms and abbreviations 52
Tab. 9. Speed loop tab input ..., 27 Tab. 19. Revision historycccooooiiiiiiieeeeee 55
Tab. 10. Sensors tab inputccccceeeveieiiiiiiiiees 28

PMSMMCXN10 All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide

Rev. 0 — 9 January 2023

58 /60

NXP Semiconductors

PMSMMCXN10

MCUXpresso SDK Field-Oriented Control (FOC) of 3-Phase PMSM and BLDC motors

Figures
Fig. 1. Motor-control development platform block Fig. 22. PMSM identification tabccccccceiie. 37
diagram ... 2 Fig. 23. Phase currentscoccoiiiiiiiiiiieieee e 40
Fig. 2. FRDM-MC-LVPMSM ... 3 Fig. 24. Generated and estimated positions 41
Fig. 3. Linix 45ZWN24-40 permanent magnet Fig. 25. Encoder direction—right direction 42
SYNCchronous mMotorccccceriiiiiieeiiiiiee e 4 Fig. 26. Encoder direction—wrong direction 42
Fig. 4. Teknic M-2310P permanent magnet Fig. 27. Slow step response of the Id current
SYNCchronous Motorccccceriiiiiiee i 5 CONLIOIlEr .o 43
Fig. 5. Teknic motor connector type 1cccceeviiieeeen. 5 Fig. 28. Optimal step response of the Id current
Fig. 6. Teknic motor connector type 2ccccoeeeieeeee. 6 CONLIOIlEr .o 44
Fig. 7. MCX N9XX-EVK board with highlighted Fig. 29. Fast step response of the Id current
jumper settingsoooiiiii i 7 CONLIOIlEr .o 44
Fig. 8. Assembled Freedome systemcccccceee. 8 Fig. 30. Speed profilecccceiiiiiiiiiii e 45
Fig. 9. Hardware timing and synchronization 9 Fig. 31. Motor startupccceeeieiiiiiee e 46
Fig. 10. Directory treeooccoeeieiiiiieieiiee e 13 Fig. 32. Speed controller response—SL_Ki value is
Fig. 11. Green “GO” button placed in top left-hand low, Speed Ramp is not achieved 47
(o7] 1 1= S P UPSSRRTR 19 Fig. 33. Speed controller response—SL_Kp value
Fig. 12. FreeMASTER—communication is is low, Speed Actual Filtered greatly
established successfullycccccoiiiiiniies 19 OVErshoOotSocviiiiiiiii e 48
Fig. 13. FreeMASTER communication setup Fig. 34. Speed controller response—speed loop
WINAOW oo 20 response with a small overshoot 48
Fig. 14. Default symbol filecccooeiiiiiiiiie 21 Fig. 35. Position controller response—PL_Kp value
Fig. 15. FreeMASTER + MCAT layoutcc.cccneeee. 22 is low, the actual position response is very
Fig. 16. Scalar control modeccccoociiieriiiiieeee 30 SIOW e 49
Fig. 17. Voltage FOC control modecc.ccoccoeneernnne 30 Fig. 36. Position controller response—PL_Kp value
Fig. 18. Current (torque) control modec...ccceeee.. 31 is too high and the actual position
Fig. 19. Speed FOC control modeccccceeeriiiinnennn. 31 OVErshootSocceiiiiiiii e 49
Fig. 20. Position FOC control modeccccoeeeierennne. 32 Fig. 37. Position controller response—the actual
Fig. 21. MID FreeMASTER controlccccceenineen. 33 position response is goodccccceereeiiiiennn. 50
PMSMMCXN10 All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide

Rev. 0 — 9 January 2023

59/60

NXP Semiconductors

PMSMMCXN10

MCUXpresso SDK Field-Oriented Control (FOC) of 3-Phase PMSM and BLDC motors

Contents
1 Introduction ... 1 8.8.3
2 Hardware setupcccoccccireerere s 2 8.8.4
21 FRDM-MC-LVPMSM ... 2 8.9 Initial configuration setting and update 38
2.2 Linix 45ZWN24-40 MOtOrcceeeiiiieeieeiiieeaenne 3 8.10 Control structure modesccccceevicieeennnne 40
2.3 Teknic M-2310P mMotorccooiiiieiiiiiiee e 4 8.11 Encoder sensor settingccoccooiiiiiiienns 41
24 MCX NOXX-EVK ..o 6 8.12 Alignment tuningcccoeoiiiiiei i 42
241 Hardware assemblingcccooiiiiiiiiiiiineene 7 8.13 Current [00p tUNINGoooiiiiiiiiiee e, 43
3 MCX N microcontrollers features and 8.14 Speed ramp tuNiNgGcccooeiiiiiieeie e 44

peripheral settingsoccoooiiiiiiieee 9 8.15 Open loop startupcccccvviviiieiieieeeeeeeeeeeeee, 45
3.1 MCX NOAX ..o 9 8.16 BEMEF observer tuningccoccooeeeiiiiiiieneenns 46
3.1.1 Hardware timing and synchronization 9 8.17 Speed PI controller tuningccccceeeiiiee.n. 46
3.1.2 Motor control peripheral settings 10 8.18 Position P controller tuningcccoocoiiiinie 48
3.1.2.1 PWM generation - PWM1 ... 10 9 CoNClUSION ... 51
3.1.2.2 Analog sensing - ADC1ccciiiiiiiiieiiieeee 10 10 Acronyms and abbreviationscccccee. 52
3.1.2.3 Quadrature Decoder (QD) module 10 11 Referencesccccvciiiiniieennninn s 53
3.1.2.4 Slow-loop interrupt generation - CTIMER 10 12 Useful linkscooveieiiccceeererer s 54
3.2 Available motor control examples 11 13 Revision historycccciiicciereeecee 55
3.21 pmsm_enc exampleccccceveeeeeeeiiiiiiiiecins 11 14 Copyright and permissionccccceemrriiccienn. 56
3.2.2 Change motor configurationccccoccceee.. 11 15 Legal informationcccooomiiiiiiieeees 57
3.3 CPU load and memory usageccccceeeueeeen. 11
4 Project file and IDE workspace structure 13
41 PMSM project structureccocceeieiiiinnene. 13
5 e Yo 15
51 Compiler warningscccceeveieieee e 15
6 Motor-control peripheral initialization 16
7 User interface ... 18
8 Remote control using FreeMASTER 19
8.1 Establishing FreeMASTER communication 19
8.2 TSA replacement with ELF file 20
8.3 MCAT FreeMASTER interface (Motor

Control Application Tuning)ccccceeeiiiieeeeenes 21

8.3.1 MCAT tabs' descriptionccccoeeeiiiiiiiinnns 23
8.3.1.1 Application conceptcccceeeiiiiiiiiiiiiiiiii, 23
8.3.1.2 Parameterscccooiiiiiiiiii e 23
8.3.1.3 Current 00pP ..oooeeeiiiiii e, 26
8.3.1.4 Speed lo0op ..uvvieeiiieiiiieee e 26
8.3.1.5 SENSOIS .ooiiiiiiiiiee et 28
8.3.1.6 SEeNSOrIESSoiiiiiiiiiieaeiiiiie e 28
8.4 Motor Control Modesccocceeeiiiiiiineeiiieenn. 29
8.4.1 Control structureccooiiiiiiiiee e 30
8.5 Switch between Spinand MID 32
8.6 Identifying parameters of user motor 32
8.6.1 Motor parameter identification using MID 34
8.6.2 MID faults and warningscccccoeviiieennnne 34
8.7 MID algorithmsoooiiiiiiiiiiii e 35
8.7.1 Stator resistance measurement 35
8.7.2 Stator inductances measurement 35
8.7.3 BEMF constant measurement 35
8.74 Number of pole-pair assistantcccccc......... 36
8.7.5 Mechanical parameters measurement 36
8.8 Electrical parameters measurement control37
8.8.1 MOdE O .o 37
8.8.2 MOdE T i 37

Please be aware that important notices concerning this document and the product(s)
described herein, have been included in section 'Legal information'.

© 2023 NXP B.V.

All rights reserved.

For more information, please visit: http://www.nxp.com

Date of release: 9 January 2023
Document identifier: PMSMMCXN10

	1 Introduction
	2 Hardware setup
	2.1 FRDM-MC-LVPMSM
	2.2 Linix 45ZWN24-40 motor
	2.3 Teknic M-2310P motor
	2.4 MCX N9XX-EVK
	2.4.1 Hardware assembling

	3 MCX N microcontrollers features and peripheral settings
	3.1 MCX N94x
	3.1.1 Hardware timing and synchronization
	3.1.2 Motor control peripheral settings
	3.1.2.1 PWM generation - PWM1
	3.1.2.2 Analog sensing - ADC1
	3.1.2.3 Quadrature Decoder (QD) module
	3.1.2.4 Slow-loop interrupt generation - CTIMER

	3.2 Available motor control examples
	3.2.1 pmsm_enc example
	3.2.2 Change motor configuration

	3.3 CPU load and memory usage

	4 Project file and IDE workspace structure
	4.1 PMSM project structure

	5 Tools
	5.1 Compiler warnings

	6 Motor-control peripheral initialization
	7 User interface
	8 Remote control using FreeMASTER
	8.1 Establishing FreeMASTER communication
	8.2 TSA replacement with ELF file
	8.3 MCAT FreeMASTER interface (Motor Control Application Tuning)
	8.3.1 MCAT tabs' description
	8.3.1.1 Application concept
	8.3.1.2 Parameters
	8.3.1.3 Current loop
	8.3.1.4 Speed loop
	8.3.1.5 Sensors
	8.3.1.6 Sensorless

	8.4 Motor Control Modes
	8.4.1 Control structure

	8.5 Switch between Spin and MID
	8.6 Identifying parameters of user motor
	8.6.1 Motor parameter identification using MID
	8.6.2 MID faults and warnings

	8.7 MID algorithms
	8.7.1 Stator resistance measurement
	8.7.2 Stator inductances measurement
	8.7.3 BEMF constant measurement
	8.7.4 Number of pole-pair assistant
	8.7.5 Mechanical parameters measurement

	8.8 Electrical parameters measurement control
	8.8.1 Mode 0
	8.8.2 Mode 1
	8.8.3 Mode 2
	8.8.4 Mode 3

	8.9 Initial configuration setting and update
	8.10 Control structure modes
	8.11 Encoder sensor setting
	8.12 Alignment tuning
	8.13 Current loop tuning
	8.14 Speed ramp tuning
	8.15 Open loop startup
	8.16 BEMF observer tuning
	8.17 Speed PI controller tuning
	8.18 Position P controller tuning

	9 Conclusion
	10 Acronyms and abbreviations
	11 References
	12 Useful links
	13 Revision history
	14 Copyright and permission
	15 Legal information
	Tables
	Figures
	Contents

